Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: unsloth/tinyllama
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 74fd83b58bc4ad47_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/74fd83b58bc4ad47_train_data.json
  type:
    field_input: conversation
    field_instruction: note
    field_output: summary
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/c45ed0e9-140f-4c89-9882-409edc73abaa
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/74fd83b58bc4ad47_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 21068da4-737c-49df-9240-0bd8ff25df8b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 21068da4-737c-49df-9240-0bd8ff25df8b
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

c45ed0e9-140f-4c89-9882-409edc73abaa

This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1105
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0011 1 1.2239
No log 0.0452 40 1.1594
No log 0.0904 80 0.6742
0.9748 0.1356 120 0.2826
0.9748 0.1808 160 0.2384
0.2539 0.2260 200 0.2086
0.2539 0.2712 240 0.1876
0.2539 0.3164 280 0.1782
0.1888 0.3616 320 0.1701
0.1888 0.4068 360 0.1643
0.1653 0.4520 400 0.1599
0.1653 0.4972 440 0.1560
0.1653 0.5424 480 0.1529
0.1543 0.5876 520 0.1507
0.1543 0.6328 560 0.1481
0.1496 0.6780 600 0.1469
0.1496 0.7232 640 0.1446
0.1496 0.7684 680 0.1431
0.145 0.8136 720 0.1413
0.145 0.8588 760 0.1410
0.1417 0.9040 800 0.1388
0.1417 0.9492 840 0.1377
0.1417 0.9944 880 0.1363
0.1366 1.0395 920 0.1358
0.1366 1.0847 960 0.1354
0.1314 1.1299 1000 0.1333
0.1314 1.1751 1040 0.1335
0.1314 1.2203 1080 0.1319
0.1305 1.2655 1120 0.1324
0.1305 1.3107 1160 0.1303
0.1264 1.3559 1200 0.1289
0.1264 1.4011 1240 0.1278
0.1264 1.4463 1280 0.1272
0.1244 1.4915 1320 0.1267
0.1244 1.5367 1360 0.1249
0.1224 1.5819 1400 0.1244
0.1224 1.6271 1440 0.1261
0.1224 1.6723 1480 0.1239
0.1239 1.7175 1520 0.1227
0.1239 1.7627 1560 0.1229
0.121 1.8079 1600 0.1221
0.121 1.8531 1640 0.1208
0.121 1.8983 1680 0.1205
0.1186 1.9435 1720 0.1194
0.1186 1.9887 1760 0.1189
0.1117 2.0339 1800 0.1192
0.1117 2.0791 1840 0.1192
0.1117 2.1243 1880 0.1196

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/c45ed0e9-140f-4c89-9882-409edc73abaa

Base model

unsloth/tinyllama
Adapter
(336)
this model