See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: unsloth/tinyllama
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 74fd83b58bc4ad47_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/74fd83b58bc4ad47_train_data.json
type:
field_input: conversation
field_instruction: note
field_output: summary
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/c45ed0e9-140f-4c89-9882-409edc73abaa
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/74fd83b58bc4ad47_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 21068da4-737c-49df-9240-0bd8ff25df8b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 21068da4-737c-49df-9240-0bd8ff25df8b
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
c45ed0e9-140f-4c89-9882-409edc73abaa
This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1196
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1105
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0011 | 1 | 1.2239 |
No log | 0.0452 | 40 | 1.1594 |
No log | 0.0904 | 80 | 0.6742 |
0.9748 | 0.1356 | 120 | 0.2826 |
0.9748 | 0.1808 | 160 | 0.2384 |
0.2539 | 0.2260 | 200 | 0.2086 |
0.2539 | 0.2712 | 240 | 0.1876 |
0.2539 | 0.3164 | 280 | 0.1782 |
0.1888 | 0.3616 | 320 | 0.1701 |
0.1888 | 0.4068 | 360 | 0.1643 |
0.1653 | 0.4520 | 400 | 0.1599 |
0.1653 | 0.4972 | 440 | 0.1560 |
0.1653 | 0.5424 | 480 | 0.1529 |
0.1543 | 0.5876 | 520 | 0.1507 |
0.1543 | 0.6328 | 560 | 0.1481 |
0.1496 | 0.6780 | 600 | 0.1469 |
0.1496 | 0.7232 | 640 | 0.1446 |
0.1496 | 0.7684 | 680 | 0.1431 |
0.145 | 0.8136 | 720 | 0.1413 |
0.145 | 0.8588 | 760 | 0.1410 |
0.1417 | 0.9040 | 800 | 0.1388 |
0.1417 | 0.9492 | 840 | 0.1377 |
0.1417 | 0.9944 | 880 | 0.1363 |
0.1366 | 1.0395 | 920 | 0.1358 |
0.1366 | 1.0847 | 960 | 0.1354 |
0.1314 | 1.1299 | 1000 | 0.1333 |
0.1314 | 1.1751 | 1040 | 0.1335 |
0.1314 | 1.2203 | 1080 | 0.1319 |
0.1305 | 1.2655 | 1120 | 0.1324 |
0.1305 | 1.3107 | 1160 | 0.1303 |
0.1264 | 1.3559 | 1200 | 0.1289 |
0.1264 | 1.4011 | 1240 | 0.1278 |
0.1264 | 1.4463 | 1280 | 0.1272 |
0.1244 | 1.4915 | 1320 | 0.1267 |
0.1244 | 1.5367 | 1360 | 0.1249 |
0.1224 | 1.5819 | 1400 | 0.1244 |
0.1224 | 1.6271 | 1440 | 0.1261 |
0.1224 | 1.6723 | 1480 | 0.1239 |
0.1239 | 1.7175 | 1520 | 0.1227 |
0.1239 | 1.7627 | 1560 | 0.1229 |
0.121 | 1.8079 | 1600 | 0.1221 |
0.121 | 1.8531 | 1640 | 0.1208 |
0.121 | 1.8983 | 1680 | 0.1205 |
0.1186 | 1.9435 | 1720 | 0.1194 |
0.1186 | 1.9887 | 1760 | 0.1189 |
0.1117 | 2.0339 | 1800 | 0.1192 |
0.1117 | 2.0791 | 1840 | 0.1192 |
0.1117 | 2.1243 | 1880 | 0.1196 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/c45ed0e9-140f-4c89-9882-409edc73abaa
Base model
unsloth/tinyllama