Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: unsloth/SmolLM2-135M
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 5b239afff048be33_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5b239afff048be33_train_data.json
  type:
    field_instruction: instruction
    field_output: output_1
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 1
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 20
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/ce0c8b53-2ff3-4507-b6e3-fcd3c3e4fd7e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/5b239afff048be33_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 20
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3883aa00-6588-42b3-bf77-b1f07b299789
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3883aa00-6588-42b3-bf77-b1f07b299789
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

ce0c8b53-2ff3-4507-b6e3-fcd3c3e4fd7e

This model is a fine-tuned version of unsloth/SmolLM2-135M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5664

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 61
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
No log 0.0041 1 1.7893
No log 0.0815 20 1.7588
No log 0.1629 40 1.6881
No log 0.2444 60 1.6510
No log 0.3259 80 1.6331
1.6772 0.4073 100 1.6229
1.6772 0.4888 120 1.6162
1.6772 0.5703 140 1.6114
1.6772 0.6517 160 1.6064
1.6772 0.7332 180 1.6028
1.5962 0.8147 200 1.5993
1.5962 0.8961 220 1.5963
1.5962 0.9776 240 1.5933
1.5962 1.0591 260 1.5926
1.5962 1.1405 280 1.5890
1.5752 1.2220 300 1.5859
1.5752 1.3035 320 1.5832
1.5752 1.3849 340 1.5807
1.5752 1.4664 360 1.5787
1.5752 1.5479 380 1.5769
1.5522 1.6293 400 1.5743
1.5522 1.7108 420 1.5721
1.5522 1.7923 440 1.5704
1.5522 1.8737 460 1.5677
1.5522 1.9552 480 1.5658
1.5454 2.0367 500 1.5664

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/ce0c8b53-2ff3-4507-b6e3-fcd3c3e4fd7e

Adapter
(260)
this model