Bert-mini2Bert-mini Summarization with 🤗EncoderDecoder Framework
This model is a warm-started BERT2BERT (mini) model fine-tuned on the CNN/Dailymail summarization dataset.
The model achieves a 16.51 ROUGE-2 score on CNN/Dailymail's test dataset.
For more details on how the model was fine-tuned, please refer to this notebook.
Results on test set 📝
Metric | # Value |
---|---|
ROUGE-2 | 16.51 |
Model in Action 🚀
from transformers import BertTokenizerFast, EncoderDecoderModel
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = BertTokenizerFast.from_pretrained('mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization')
model = EncoderDecoderModel.from_pretrained('mrm8488/bert-mini2bert-mini-finetuned-cnn_daily_mail-summarization').to(device)
def generate_summary(text):
# cut off at BERT max length 512
inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
attention_mask = inputs.attention_mask.to(device)
output = model.generate(input_ids, attention_mask=attention_mask)
return tokenizer.decode(output[0], skip_special_tokens=True)
text = "your text to be summarized here..."
generate_summary(text)
Created by Manuel Romero/@mrm8488 | LinkedIn
Made with ♥ in Spain
- Downloads last month
- 1,007
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.