Spanish BERT (BETO) + POS

This model is a fine-tuned on Spanish CONLL CORPORA version of the Spanish BERT cased (BETO) for POS (Part of Speech tagging) downstream task.

Details of the downstream task (POS) - Dataset

I preprocessed the dataset and split it as train / dev (80/20)

Dataset # Examples
Train 340 K
Dev 50 K
AO, AQ, CC, CS, DA, DD, DE, DI, DN, DP, DT, Faa, Fat, Fc, Fd, Fe, Fg, Fh, Fia, Fit, Fp, Fpa, Fpt, Fs, Ft, Fx, Fz, I, NC, NP, P0, PD, PI, PN, PP, PR, PT, PX, RG, RN, SP, VAI, VAM, VAN, VAP, VAS, VMG, VMI, VMM, VMN, VMP, VMS, VSG, VSI, VSM, VSN, VSP, VSS, Y and Z

Metrics on evaluation set:

Metric # score
F1 90.06
Precision 89.46
Recall 90.67

Model in action

Fast usage with pipelines:

from transformers import pipeline

nlp_pos = pipeline(
    "ner",
    model="mrm8488/bert-spanish-cased-finetuned-pos",
    tokenizer=(
        'mrm8488/bert-spanish-cased-finetuned-pos',  
        {"use_fast": False}
))


text = 'Mis amigos están pensando en viajar a Londres este verano'

nlp_pos(text)

#Output:
'''
[{'entity': 'NC', 'score': 0.7792173624038696, 'word': '[CLS]'},
 {'entity': 'DP', 'score': 0.9996283650398254, 'word': 'Mis'},
 {'entity': 'NC', 'score': 0.9999253749847412, 'word': 'amigos'},
 {'entity': 'VMI', 'score': 0.9998560547828674, 'word': 'están'},
 {'entity': 'VMG', 'score': 0.9992249011993408, 'word': 'pensando'},
 {'entity': 'SP', 'score': 0.9999602437019348, 'word': 'en'},
 {'entity': 'VMN', 'score': 0.9998666048049927, 'word': 'viajar'},
 {'entity': 'SP', 'score': 0.9999545216560364, 'word': 'a'},
 {'entity': 'VMN', 'score': 0.8722310662269592, 'word': 'Londres'},
 {'entity': 'DD', 'score': 0.9995203614234924, 'word': 'este'},
 {'entity': 'NC', 'score': 0.9999248385429382, 'word': 'verano'},
 {'entity': 'NC', 'score': 0.8802427649497986, 'word': '[SEP]'}]
 '''

model in action

16 POS tags version also available here

Created by Manuel Romero/@mrm8488

Made with in Spain

Downloads last month
26
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.