SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("mrm8488/distilbert-base-matryoshka-sts-v2")
sentences = [
'A boy is vacuuming.',
'A little boy is vacuuming the floor.',
'Suicide bomber strikes in Syria',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.858 |
spearman_cosine |
0.8718 |
pearson_manhattan |
0.858 |
spearman_manhattan |
0.8612 |
pearson_euclidean |
0.8585 |
spearman_euclidean |
0.8618 |
pearson_dot |
0.6259 |
spearman_dot |
0.6246 |
pearson_max |
0.8585 |
spearman_max |
0.8718 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8553 |
spearman_cosine |
0.8709 |
pearson_manhattan |
0.8572 |
spearman_manhattan |
0.861 |
pearson_euclidean |
0.8578 |
spearman_euclidean |
0.8612 |
pearson_dot |
0.6302 |
spearman_dot |
0.6313 |
pearson_max |
0.8578 |
spearman_max |
0.8709 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8534 |
spearman_cosine |
0.8685 |
pearson_manhattan |
0.855 |
spearman_manhattan |
0.8596 |
pearson_euclidean |
0.8552 |
spearman_euclidean |
0.8595 |
pearson_dot |
0.5693 |
spearman_dot |
0.5632 |
pearson_max |
0.8552 |
spearman_max |
0.8685 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8437 |
spearman_cosine |
0.8634 |
pearson_manhattan |
0.8455 |
spearman_manhattan |
0.8519 |
pearson_euclidean |
0.848 |
spearman_euclidean |
0.8537 |
pearson_dot |
0.5513 |
spearman_dot |
0.5501 |
pearson_max |
0.848 |
spearman_max |
0.8634 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8272 |
spearman_cosine |
0.8541 |
pearson_manhattan |
0.8307 |
spearman_manhattan |
0.8407 |
pearson_euclidean |
0.8342 |
spearman_euclidean |
0.8427 |
pearson_dot |
0.4945 |
spearman_dot |
0.4922 |
pearson_max |
0.8342 |
spearman_max |
0.8541 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.795 |
spearman_cosine |
0.8338 |
pearson_manhattan |
0.8121 |
spearman_manhattan |
0.8249 |
pearson_euclidean |
0.8158 |
spearman_euclidean |
0.8263 |
pearson_dot |
0.4444 |
spearman_dot |
0.4333 |
pearson_max |
0.8158 |
spearman_max |
0.8338 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7403 |
spearman_cosine |
0.7953 |
pearson_manhattan |
0.7662 |
spearman_manhattan |
0.7806 |
pearson_euclidean |
0.7753 |
spearman_euclidean |
0.7884 |
pearson_dot |
0.2914 |
spearman_dot |
0.2732 |
pearson_max |
0.7753 |
spearman_max |
0.7953 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8355 |
spearman_cosine |
0.8474 |
pearson_manhattan |
0.8478 |
spearman_manhattan |
0.844 |
pearson_euclidean |
0.8482 |
spearman_euclidean |
0.8443 |
pearson_dot |
0.5752 |
spearman_dot |
0.5646 |
pearson_max |
0.8482 |
spearman_max |
0.8474 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8346 |
spearman_cosine |
0.848 |
pearson_manhattan |
0.8471 |
spearman_manhattan |
0.8432 |
pearson_euclidean |
0.8476 |
spearman_euclidean |
0.8439 |
pearson_dot |
0.5891 |
spearman_dot |
0.5796 |
pearson_max |
0.8476 |
spearman_max |
0.848 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8264 |
spearman_cosine |
0.8415 |
pearson_manhattan |
0.8414 |
spearman_manhattan |
0.8389 |
pearson_euclidean |
0.8423 |
spearman_euclidean |
0.8401 |
pearson_dot |
0.523 |
spearman_dot |
0.5099 |
pearson_max |
0.8423 |
spearman_max |
0.8415 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.819 |
spearman_cosine |
0.8376 |
pearson_manhattan |
0.835 |
spearman_manhattan |
0.8336 |
pearson_euclidean |
0.8365 |
spearman_euclidean |
0.8348 |
pearson_dot |
0.498 |
spearman_dot |
0.4897 |
pearson_max |
0.8365 |
spearman_max |
0.8376 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8062 |
spearman_cosine |
0.8292 |
pearson_manhattan |
0.8237 |
spearman_manhattan |
0.8244 |
pearson_euclidean |
0.8273 |
spearman_euclidean |
0.827 |
pearson_dot |
0.4318 |
spearman_dot |
0.4325 |
pearson_max |
0.8273 |
spearman_max |
0.8292 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.777 |
spearman_cosine |
0.8132 |
pearson_manhattan |
0.8041 |
spearman_manhattan |
0.8084 |
pearson_euclidean |
0.809 |
spearman_euclidean |
0.8126 |
pearson_dot |
0.3722 |
spearman_dot |
0.3636 |
pearson_max |
0.809 |
spearman_max |
0.8132 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7351 |
spearman_cosine |
0.7811 |
pearson_manhattan |
0.7687 |
spearman_manhattan |
0.7767 |
pearson_euclidean |
0.7733 |
spearman_euclidean |
0.7799 |
pearson_dot |
0.2548 |
spearman_dot |
0.2412 |
pearson_max |
0.7733 |
spearman_max |
0.7811 |
Training Details
Training Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 6 tokens
- mean: 10.0 tokens
- max: 28 tokens
|
- min: 5 tokens
- mean: 9.95 tokens
- max: 25 tokens
|
- min: 0.0
- mean: 0.54
- max: 1.0
|
- Samples:
sentence1 |
sentence2 |
score |
A plane is taking off. |
An air plane is taking off. |
1.0 |
A man is playing a large flute. |
A man is playing a flute. |
0.76 |
A man is spreading shreded cheese on a pizza. |
A man is spreading shredded cheese on an uncooked pizza. |
0.76 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 5 tokens
- mean: 15.1 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 15.11 tokens
- max: 53 tokens
|
- min: 0.0
- mean: 0.47
- max: 1.0
|
- Samples:
sentence1 |
sentence2 |
score |
A man with a hard hat is dancing. |
A man wearing a hard hat is dancing. |
1.0 |
A young child is riding a horse. |
A child is riding a horse. |
0.95 |
A man is feeding a mouse to a snake. |
The man is feeding a mouse to the snake. |
1.0 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
num_train_epochs
: 4
warmup_ratio
: 0.1
bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-16_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-32_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-768_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-16_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-32_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
2.2222 |
100 |
60.4066 |
60.8718 |
0.8634 |
0.7953 |
0.8685 |
0.8338 |
0.8709 |
0.8541 |
0.8718 |
- |
- |
- |
- |
- |
- |
- |
4.0 |
180 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.8376 |
0.7811 |
0.8415 |
0.8132 |
0.8480 |
0.8292 |
0.8474 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}