|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1K<n<10K |
|
- loss:MatryoshkaLoss |
|
- loss:CoSENTLoss |
|
base_model: distilbert/distilbert-base-uncased |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: A woman is dancing. |
|
sentences: |
|
- Women are dancing. |
|
- A toddler walks down a hallway. |
|
- Shinzo Abe is Japan's prime minister |
|
- source_sentence: A man is spitting. |
|
sentences: |
|
- A man is crying. |
|
- The girl is playing the guitar. |
|
- A slow loris hanging on a cord. |
|
- source_sentence: A man is speaking. |
|
sentences: |
|
- A man is talking. |
|
- A man plays an acoustic guitar. |
|
- The dogs are chasing a cat. |
|
- source_sentence: A plane in the sky. |
|
sentences: |
|
- Two airplanes in the sky. |
|
- A slow loris hanging on a cord. |
|
- Turkey's PM Warns Against Protests |
|
- source_sentence: A baby is laughing. |
|
sentences: |
|
- The baby laughed in his car seat. |
|
- A brown horse in a green field. |
|
- Bangladesh Islamist leader executed |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on distilbert/distilbert-base-uncased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8597256789475689 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8704890959686488 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8577087236028236 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8613364457717408 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8573646665610765 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8611053939518858 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7230928823966007 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7292814320710974 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8597256789475689 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8704890959686488 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8565849984058084 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8690380994355429 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8560989283234569 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8602048185493963 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8560319360006069 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8598344132114529 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7250593470322173 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7324935808414036 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8565849984058084 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8690380994355429 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8508677416837496 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8655671620679589 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8516296649395021 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8576372447474295 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8512958746883122 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8567348597207523 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.691266333570308 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6983564197469347 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8516296649395021 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8655671620679589 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8416379040782492 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8625866345174488 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8410105415496507 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8496221523132089 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8431760561066126 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8505697779445824 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.677560950193549 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6864851260895027 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8431760561066126 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8625866345174488 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.823170809036498 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8523184158399918 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8255414664543136 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8358413125165197 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8292011526410756 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8385242101250404 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.641639319620455 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6564088055361835 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8292011526410756 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8523184158399918 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 32 |
|
type: sts-dev-32 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7903418859430655 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8327625705936669 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8031537655331857 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8168069966906343 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8078549989079483 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8195679102426064 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5951512690504269 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5992430550243973 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8078549989079483 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8327625705936669 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8259116102299048 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8420103291660583 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8417036739734224 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.839403978426242 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8416944892693242 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8392814362849023 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6531059298507882 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6395643411764597 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8417036739734224 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8420103291660583 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8243325623482549 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8417788357334501 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8405895269265039 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8387513037939833 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8405749756794761 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8386191956000736 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6577547074460394 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6453398362527448 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8405895269265039 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8417788357334501 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8128490933340125 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8343525276981816 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8349925426973063 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8339373046648948 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8349685334828352 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8342389147888624 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6010530472572276 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5827176472260001 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8349925426973063 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8343525276981816 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8037074044935162 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8297484250803338 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8282523311738189 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8292579770469635 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.828555014804415 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8294547431431344 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.579341375708575 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5659659830073487 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.828555014804415 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8297484250803338 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7861572380387101 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8221344542757412 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8179044736790866 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8218843830925717 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8199399298670013 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8240682904452457 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5115276911122266 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5024074247877125 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8199399298670013 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8240682904452457 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 32 |
|
type: sts-test-32 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7616404560065974 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8126281001961144 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7995560120404742 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8084393007868024 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8024415842761214 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8115677983458126 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.4646775610104062 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.451018702626726 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8024415842761214 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8126281001961144 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on distilbert/distilbert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("mrm8488/distilbert-base-matryoshka-sts") |
|
# Run inference |
|
sentences = [ |
|
'A baby is laughing.', |
|
'The baby laughed in his car seat.', |
|
'A brown horse in a green field.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8597 | |
|
| **spearman_cosine** | **0.8705** | |
|
| pearson_manhattan | 0.8577 | |
|
| spearman_manhattan | 0.8613 | |
|
| pearson_euclidean | 0.8574 | |
|
| spearman_euclidean | 0.8611 | |
|
| pearson_dot | 0.7231 | |
|
| spearman_dot | 0.7293 | |
|
| pearson_max | 0.8597 | |
|
| spearman_max | 0.8705 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.8566 | |
|
| **spearman_cosine** | **0.869** | |
|
| pearson_manhattan | 0.8561 | |
|
| spearman_manhattan | 0.8602 | |
|
| pearson_euclidean | 0.856 | |
|
| spearman_euclidean | 0.8598 | |
|
| pearson_dot | 0.7251 | |
|
| spearman_dot | 0.7325 | |
|
| pearson_max | 0.8566 | |
|
| spearman_max | 0.869 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8509 | |
|
| **spearman_cosine** | **0.8656** | |
|
| pearson_manhattan | 0.8516 | |
|
| spearman_manhattan | 0.8576 | |
|
| pearson_euclidean | 0.8513 | |
|
| spearman_euclidean | 0.8567 | |
|
| pearson_dot | 0.6913 | |
|
| spearman_dot | 0.6984 | |
|
| pearson_max | 0.8516 | |
|
| spearman_max | 0.8656 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8416 | |
|
| **spearman_cosine** | **0.8626** | |
|
| pearson_manhattan | 0.841 | |
|
| spearman_manhattan | 0.8496 | |
|
| pearson_euclidean | 0.8432 | |
|
| spearman_euclidean | 0.8506 | |
|
| pearson_dot | 0.6776 | |
|
| spearman_dot | 0.6865 | |
|
| pearson_max | 0.8432 | |
|
| spearman_max | 0.8626 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8232 | |
|
| **spearman_cosine** | **0.8523** | |
|
| pearson_manhattan | 0.8255 | |
|
| spearman_manhattan | 0.8358 | |
|
| pearson_euclidean | 0.8292 | |
|
| spearman_euclidean | 0.8385 | |
|
| pearson_dot | 0.6416 | |
|
| spearman_dot | 0.6564 | |
|
| pearson_max | 0.8292 | |
|
| spearman_max | 0.8523 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-32` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7903 | |
|
| **spearman_cosine** | **0.8328** | |
|
| pearson_manhattan | 0.8032 | |
|
| spearman_manhattan | 0.8168 | |
|
| pearson_euclidean | 0.8079 | |
|
| spearman_euclidean | 0.8196 | |
|
| pearson_dot | 0.5952 | |
|
| spearman_dot | 0.5992 | |
|
| pearson_max | 0.8079 | |
|
| spearman_max | 0.8328 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.8259 | |
|
| **spearman_cosine** | **0.842** | |
|
| pearson_manhattan | 0.8417 | |
|
| spearman_manhattan | 0.8394 | |
|
| pearson_euclidean | 0.8417 | |
|
| spearman_euclidean | 0.8393 | |
|
| pearson_dot | 0.6531 | |
|
| spearman_dot | 0.6396 | |
|
| pearson_max | 0.8417 | |
|
| spearman_max | 0.842 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8243 | |
|
| **spearman_cosine** | **0.8418** | |
|
| pearson_manhattan | 0.8406 | |
|
| spearman_manhattan | 0.8388 | |
|
| pearson_euclidean | 0.8406 | |
|
| spearman_euclidean | 0.8386 | |
|
| pearson_dot | 0.6578 | |
|
| spearman_dot | 0.6453 | |
|
| pearson_max | 0.8406 | |
|
| spearman_max | 0.8418 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8128 | |
|
| **spearman_cosine** | **0.8344** | |
|
| pearson_manhattan | 0.835 | |
|
| spearman_manhattan | 0.8339 | |
|
| pearson_euclidean | 0.835 | |
|
| spearman_euclidean | 0.8342 | |
|
| pearson_dot | 0.6011 | |
|
| spearman_dot | 0.5827 | |
|
| pearson_max | 0.835 | |
|
| spearman_max | 0.8344 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8037 | |
|
| **spearman_cosine** | **0.8297** | |
|
| pearson_manhattan | 0.8283 | |
|
| spearman_manhattan | 0.8293 | |
|
| pearson_euclidean | 0.8286 | |
|
| spearman_euclidean | 0.8295 | |
|
| pearson_dot | 0.5793 | |
|
| spearman_dot | 0.566 | |
|
| pearson_max | 0.8286 | |
|
| spearman_max | 0.8297 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7862 | |
|
| **spearman_cosine** | **0.8221** | |
|
| pearson_manhattan | 0.8179 | |
|
| spearman_manhattan | 0.8219 | |
|
| pearson_euclidean | 0.8199 | |
|
| spearman_euclidean | 0.8241 | |
|
| pearson_dot | 0.5115 | |
|
| spearman_dot | 0.5024 | |
|
| pearson_max | 0.8199 | |
|
| spearman_max | 0.8241 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-32` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7616 | |
|
| **spearman_cosine** | **0.8126** | |
|
| pearson_manhattan | 0.7996 | |
|
| spearman_manhattan | 0.8084 | |
|
| pearson_euclidean | 0.8024 | |
|
| spearman_euclidean | 0.8116 | |
|
| pearson_dot | 0.4647 | |
|
| spearman_dot | 0.451 | |
|
| pearson_max | 0.8024 | |
|
| spearman_max | 0.8126 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 5,749 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| |
|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> | |
|
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> | |
|
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64, |
|
32 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------|:------------------------------------------------------|:------------------| |
|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | |
|
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | |
|
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64, |
|
32 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 4 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.2778 | 100 | 28.2763 | 26.3514 | 0.8250 | 0.8306 | 0.7893 | 0.8308 | 0.8094 | 0.8314 | - | - | - | - | - | - | |
|
| 0.5556 | 200 | 26.3731 | 26.0000 | 0.8373 | 0.8412 | 0.8026 | 0.8463 | 0.8267 | 0.8467 | - | - | - | - | - | - | |
|
| 0.8333 | 300 | 26.0243 | 26.5062 | 0.8434 | 0.8495 | 0.8073 | 0.8534 | 0.8297 | 0.8556 | - | - | - | - | - | - | |
|
| 1.1111 | 400 | 25.3448 | 28.1742 | 0.8496 | 0.8544 | 0.8157 | 0.8593 | 0.8361 | 0.8611 | - | - | - | - | - | - | |
|
| 1.3889 | 500 | 24.7922 | 27.0245 | 0.8488 | 0.8529 | 0.8149 | 0.8574 | 0.8352 | 0.8589 | - | - | - | - | - | - | |
|
| 1.6667 | 600 | 24.7596 | 26.9771 | 0.8516 | 0.8558 | 0.8199 | 0.8601 | 0.8389 | 0.8619 | - | - | - | - | - | - | |
|
| 1.9444 | 700 | 24.7165 | 26.2923 | 0.8602 | 0.8634 | 0.8277 | 0.8665 | 0.8476 | 0.8681 | - | - | - | - | - | - | |
|
| 2.2222 | 800 | 23.7934 | 27.9207 | 0.8570 | 0.8608 | 0.8263 | 0.8640 | 0.8460 | 0.8656 | - | - | - | - | - | - | |
|
| 2.5 | 900 | 23.4618 | 27.5855 | 0.8583 | 0.8618 | 0.8257 | 0.8657 | 0.8456 | 0.8675 | - | - | - | - | - | - | |
|
| 2.7778 | 1000 | 23.1831 | 29.9791 | 0.8533 | 0.8557 | 0.8232 | 0.8599 | 0.8411 | 0.8612 | - | - | - | - | - | - | |
|
| 3.0556 | 1100 | 23.1935 | 28.7866 | 0.8612 | 0.8636 | 0.8329 | 0.8677 | 0.8504 | 0.8689 | - | - | - | - | - | - | |
|
| 3.3333 | 1200 | 22.1447 | 30.0641 | 0.8597 | 0.8630 | 0.8285 | 0.8661 | 0.8488 | 0.8676 | - | - | - | - | - | - | |
|
| 3.6111 | 1300 | 21.9271 | 30.9347 | 0.8613 | 0.8648 | 0.8309 | 0.8679 | 0.8509 | 0.8697 | - | - | - | - | - | - | |
|
| 3.8889 | 1400 | 21.973 | 30.9209 | 0.8626 | 0.8656 | 0.8328 | 0.8690 | 0.8523 | 0.8705 | - | - | - | - | - | - | |
|
| 4.0 | 1440 | - | - | - | - | - | - | - | - | 0.8297 | 0.8344 | 0.8126 | 0.8418 | 0.8221 | 0.8420 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |