|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:100K<n<1M |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: distilbert/distilroberta-base |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Test Rocks |
|
sentences: |
|
- Number of testimonies |
|
- People are at a pool. |
|
- I've never been to Asia |
|
- source_sentence: No animals. |
|
sentences: |
|
- We don't have a dog. |
|
- These boys are on bikes |
|
- A person is climbing. |
|
- source_sentence: Shrinking. |
|
sentences: |
|
- That doesn't seem fair. |
|
- A man reads the paper. |
|
- I've never been to Asia |
|
- source_sentence: Loire Valley |
|
sentences: |
|
- A Lake in Loire. |
|
- people stand near pole |
|
- A cat is licking itself. |
|
- source_sentence: It is well. |
|
sentences: |
|
- That's convenient. |
|
- away from the children |
|
- She hated the restaurant! |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on distilbert/distilroberta-base |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8413274730706258 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8478057476815382 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8414182910991368 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8394684211369814 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8423380151813549 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8401129676358965 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7854982058734802 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7814388303641997 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8423380151813549 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8478057476815382 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8394744649386727 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8469596264857904 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8398552366754626 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8377241640608183 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8406514989809173 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8380050330376462 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7811135781647157 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7776714775017128 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8406514989809173 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8469596264857904 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8326846589795867 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8435757360139872 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.835121668379584 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.833167770567356 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8359785864160201 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8337674519096212 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7499541215721716 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7452815230357489 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8359785864160201 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8435757360139872 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8243384464323462 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8399706247679909 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8281897604718583 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8270317815639731 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8281918243965822 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8267242273030063 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7110017325551932 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7049602384186016 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8281918243965822 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8399706247679909 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.811599959622093 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8316629408285197 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8113103800424869 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8104916438729426 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8113924334973999 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8110877753624469 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.641225674602723 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6346995881423587 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.811599959622093 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8316629408285197 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 32 |
|
type: sts-dev-32 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7834130163353433 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.814057381112976 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7831854350286095 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7859760066096324 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7868628503474937 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7893614397994021 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5533705216922039 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5449230360083127 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7868628503474937 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.814057381112976 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 16 |
|
type: sts-dev-16 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7259201534121641 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7751337117844075 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7420762055565752 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7552849049126117 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7483211915991654 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.759888035465032 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.4387404126202509 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.42591442860202633 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7483211915991654 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7751337117844075 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on distilbert/distilroberta-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("mrm8488/distilroberta-base-ft-allnli-matryoshka-768-16-1e-128bs") |
|
# Run inference |
|
sentences = [ |
|
'It is well.', |
|
"That's convenient.", |
|
'away from the children', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8413 | |
|
| **spearman_cosine** | **0.8478** | |
|
| pearson_manhattan | 0.8414 | |
|
| spearman_manhattan | 0.8395 | |
|
| pearson_euclidean | 0.8423 | |
|
| spearman_euclidean | 0.8401 | |
|
| pearson_dot | 0.7855 | |
|
| spearman_dot | 0.7814 | |
|
| pearson_max | 0.8423 | |
|
| spearman_max | 0.8478 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.8395 | |
|
| **spearman_cosine** | **0.847** | |
|
| pearson_manhattan | 0.8399 | |
|
| spearman_manhattan | 0.8377 | |
|
| pearson_euclidean | 0.8407 | |
|
| spearman_euclidean | 0.838 | |
|
| pearson_dot | 0.7811 | |
|
| spearman_dot | 0.7777 | |
|
| pearson_max | 0.8407 | |
|
| spearman_max | 0.847 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8327 | |
|
| **spearman_cosine** | **0.8436** | |
|
| pearson_manhattan | 0.8351 | |
|
| spearman_manhattan | 0.8332 | |
|
| pearson_euclidean | 0.836 | |
|
| spearman_euclidean | 0.8338 | |
|
| pearson_dot | 0.75 | |
|
| spearman_dot | 0.7453 | |
|
| pearson_max | 0.836 | |
|
| spearman_max | 0.8436 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:---------| |
|
| pearson_cosine | 0.8243 | |
|
| **spearman_cosine** | **0.84** | |
|
| pearson_manhattan | 0.8282 | |
|
| spearman_manhattan | 0.827 | |
|
| pearson_euclidean | 0.8282 | |
|
| spearman_euclidean | 0.8267 | |
|
| pearson_dot | 0.711 | |
|
| spearman_dot | 0.705 | |
|
| pearson_max | 0.8282 | |
|
| spearman_max | 0.84 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8116 | |
|
| **spearman_cosine** | **0.8317** | |
|
| pearson_manhattan | 0.8113 | |
|
| spearman_manhattan | 0.8105 | |
|
| pearson_euclidean | 0.8114 | |
|
| spearman_euclidean | 0.8111 | |
|
| pearson_dot | 0.6412 | |
|
| spearman_dot | 0.6347 | |
|
| pearson_max | 0.8116 | |
|
| spearman_max | 0.8317 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-32` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7834 | |
|
| **spearman_cosine** | **0.8141** | |
|
| pearson_manhattan | 0.7832 | |
|
| spearman_manhattan | 0.786 | |
|
| pearson_euclidean | 0.7869 | |
|
| spearman_euclidean | 0.7894 | |
|
| pearson_dot | 0.5534 | |
|
| spearman_dot | 0.5449 | |
|
| pearson_max | 0.7869 | |
|
| spearman_max | 0.8141 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-16` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7259 | |
|
| **spearman_cosine** | **0.7751** | |
|
| pearson_manhattan | 0.7421 | |
|
| spearman_manhattan | 0.7553 | |
|
| pearson_euclidean | 0.7483 | |
|
| spearman_euclidean | 0.7599 | |
|
| pearson_dot | 0.4387 | |
|
| spearman_dot | 0.4259 | |
|
| pearson_max | 0.7483 | |
|
| spearman_max | 0.7751 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/all-nli |
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 557,850 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> | |
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> | |
|
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64, |
|
32, |
|
16 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/all-nli |
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> | |
|
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> | |
|
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64, |
|
32, |
|
16 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:| |
|
| 0.0229 | 100 | 29.0917 | 14.1514 | 0.7659 | 0.7440 | 0.7915 | 0.7749 | 0.7999 | 0.7909 | 0.7918 | |
|
| 0.0459 | 200 | 15.6915 | 11.7031 | 0.7718 | 0.7487 | 0.7940 | 0.7776 | 0.8005 | 0.7931 | 0.7871 | |
|
| 0.0688 | 300 | 14.3136 | 11.1970 | 0.7744 | 0.7389 | 0.7952 | 0.7728 | 0.8036 | 0.7925 | 0.7938 | |
|
| 0.0918 | 400 | 12.8122 | 10.4416 | 0.7899 | 0.7536 | 0.8040 | 0.7764 | 0.8065 | 0.7953 | 0.8018 | |
|
| 0.1147 | 500 | 12.1747 | 10.5491 | 0.7871 | 0.7513 | 0.8035 | 0.7785 | 0.8094 | 0.7978 | 0.8008 | |
|
| 0.1376 | 600 | 11.6784 | 9.6618 | 0.7785 | 0.7465 | 0.7956 | 0.7762 | 0.8027 | 0.7953 | 0.7935 | |
|
| 0.1606 | 700 | 11.9351 | 9.3279 | 0.7907 | 0.7403 | 0.7995 | 0.7706 | 0.8036 | 0.7894 | 0.7982 | |
|
| 0.1835 | 800 | 10.4998 | 9.1538 | 0.7911 | 0.7516 | 0.8043 | 0.7820 | 0.8078 | 0.8025 | 0.8010 | |
|
| 0.2065 | 900 | 10.6069 | 9.0531 | 0.7874 | 0.7371 | 0.7974 | 0.7704 | 0.8042 | 0.7910 | 0.8010 | |
|
| 0.2294 | 1000 | 10.0316 | 8.9759 | 0.7842 | 0.7356 | 0.7981 | 0.7721 | 0.8024 | 0.7905 | 0.7955 | |
|
| 0.2524 | 1100 | 10.199 | 8.5398 | 0.7863 | 0.7322 | 0.7961 | 0.7691 | 0.8002 | 0.7910 | 0.7936 | |
|
| 0.2753 | 1200 | 9.9393 | 8.1356 | 0.7860 | 0.7304 | 0.7990 | 0.7682 | 0.8025 | 0.7908 | 0.7954 | |
|
| 0.2982 | 1300 | 9.8711 | 7.9177 | 0.7932 | 0.7319 | 0.8028 | 0.7708 | 0.8067 | 0.7924 | 0.8013 | |
|
| 0.3212 | 1400 | 9.3594 | 7.8870 | 0.7892 | 0.7296 | 0.8032 | 0.7710 | 0.8070 | 0.7961 | 0.8030 | |
|
| 0.3441 | 1500 | 9.4534 | 7.5756 | 0.8003 | 0.7518 | 0.8078 | 0.7857 | 0.8112 | 0.8063 | 0.8068 | |
|
| 0.3671 | 1600 | 8.9061 | 7.8164 | 0.7781 | 0.7390 | 0.7942 | 0.7761 | 0.8002 | 0.7968 | 0.7941 | |
|
| 0.3900 | 1700 | 8.5164 | 7.4869 | 0.7934 | 0.7530 | 0.8063 | 0.7864 | 0.8120 | 0.8055 | 0.8080 | |
|
| 0.4129 | 1800 | 8.9262 | 7.7155 | 0.7846 | 0.7301 | 0.7991 | 0.7728 | 0.8065 | 0.7945 | 0.8003 | |
|
| 0.4359 | 1900 | 8.3242 | 7.3068 | 0.7850 | 0.7273 | 0.7976 | 0.7710 | 0.8020 | 0.7904 | 0.7976 | |
|
| 0.4588 | 2000 | 8.5374 | 7.1026 | 0.7845 | 0.7272 | 0.7993 | 0.7717 | 0.8042 | 0.7925 | 0.7963 | |
|
| 0.4818 | 2100 | 8.2304 | 7.1601 | 0.7879 | 0.7354 | 0.8015 | 0.7719 | 0.8059 | 0.7944 | 0.8029 | |
|
| 0.5047 | 2200 | 8.1347 | 7.8267 | 0.7715 | 0.7230 | 0.7889 | 0.7626 | 0.7956 | 0.7849 | 0.7930 | |
|
| 0.5276 | 2300 | 8.3057 | 8.0057 | 0.7622 | 0.7148 | 0.7814 | 0.7572 | 0.7881 | 0.7769 | 0.7836 | |
|
| 0.5506 | 2400 | 8.215 | 7.6922 | 0.7772 | 0.7210 | 0.7929 | 0.7637 | 0.7995 | 0.7858 | 0.7956 | |
|
| 0.5735 | 2500 | 8.4343 | 7.2104 | 0.7869 | 0.7307 | 0.8017 | 0.7707 | 0.8071 | 0.7929 | 0.8048 | |
|
| 0.5965 | 2600 | 8.159 | 6.9977 | 0.7893 | 0.7297 | 0.8031 | 0.7733 | 0.8071 | 0.7928 | 0.8045 | |
|
| 0.6194 | 2700 | 8.2048 | 6.9465 | 0.7859 | 0.7280 | 0.8006 | 0.7725 | 0.8052 | 0.7926 | 0.8004 | |
|
| 0.6423 | 2800 | 8.187 | 7.3185 | 0.7790 | 0.7266 | 0.7960 | 0.7690 | 0.8018 | 0.7911 | 0.7964 | |
|
| 0.6653 | 2900 | 8.4768 | 7.5535 | 0.7756 | 0.7192 | 0.7913 | 0.7618 | 0.7958 | 0.7827 | 0.7907 | |
|
| 0.6882 | 3000 | 8.4153 | 7.3732 | 0.7825 | 0.7276 | 0.7988 | 0.7692 | 0.8029 | 0.7899 | 0.7988 | |
|
| 0.7112 | 3100 | 7.9226 | 6.8469 | 0.7912 | 0.7311 | 0.8055 | 0.7765 | 0.8101 | 0.7977 | 0.8058 | |
|
| 0.7341 | 3200 | 8.1155 | 6.7604 | 0.7880 | 0.7298 | 0.8024 | 0.7747 | 0.8071 | 0.7959 | 0.8025 | |
|
| 0.7571 | 3300 | 6.8463 | 5.4863 | 0.8357 | 0.7638 | 0.8407 | 0.8085 | 0.8431 | 0.8283 | 0.8440 | |
|
| 0.7800 | 3400 | 5.2008 | 5.2472 | 0.8362 | 0.7655 | 0.8401 | 0.8105 | 0.8429 | 0.8279 | 0.8445 | |
|
| 0.8029 | 3500 | 4.5415 | 5.1649 | 0.8385 | 0.7700 | 0.8421 | 0.8138 | 0.8454 | 0.8304 | 0.8465 | |
|
| 0.8259 | 3600 | 4.4474 | 5.0933 | 0.8371 | 0.7693 | 0.8410 | 0.8112 | 0.8443 | 0.8288 | 0.8451 | |
|
| 0.8488 | 3700 | 4.12 | 5.0555 | 0.8396 | 0.7718 | 0.8439 | 0.8140 | 0.8463 | 0.8311 | 0.8471 | |
|
| 0.8718 | 3800 | 3.9104 | 5.0147 | 0.8386 | 0.7749 | 0.8432 | 0.8129 | 0.8459 | 0.8304 | 0.8471 | |
|
| 0.8947 | 3900 | 3.9054 | 4.9966 | 0.8379 | 0.7733 | 0.8424 | 0.8125 | 0.8456 | 0.8296 | 0.8464 | |
|
| 0.9176 | 4000 | 3.757 | 4.9892 | 0.8407 | 0.7763 | 0.8447 | 0.8156 | 0.8478 | 0.8326 | 0.8488 | |
|
| 0.9406 | 4100 | 3.7729 | 4.9859 | 0.8400 | 0.7751 | 0.8436 | 0.8141 | 0.8470 | 0.8317 | 0.8478 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |