Coding Models π©βπ»
Collection
Collection to track the LLMs I fine-tuned for code generation
β’
4 items
β’
Updated
β’
1
Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of FlashAttention.
CodeAlpaca_20K: contains 20K instruction-following data used for fine-tuning the Code Alpaca model.
pip install torch==2.1.0 transformers==4.35.0 causal-conv1d==1.0.0 mamba-ssm==1.0.1
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_name = "mrm8488/mamba-coder"
eos_token = "<|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.eos_token = eos_token
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template
model = MambaLMHeadModel.from_pretrained(
model_name, device=device, dtype=torch.float16)
messages = []
prompt = "Write a bash script to remove .tmp files"
messages.append(dict(role="user", content=prompt))
input_ids = tokenizer.apply_chat_template(
messages, return_tensors="pt", add_generation_prompt=True
).to(device)
out = model.generate(
input_ids=input_ids,
max_length=2000,
temperature=0.9,
top_p=0.7,
eos_token_id=tokenizer.eos_token_id,
)
decoded = tokenizer.batch_decode(out)
assistant_message = (
decoded[0].split("<|assistant|>\n")[-1].replace(eos_token, "")
)
print(assistant_message)
git clone https://github.com/mrm8488/mamba-chat.git
cd mamba-chat
pip install -r requirements.txt
pip install -q gradio==4.8.0
python app.py \
--model mrm8488/mamba-coder \
--share
Coming soon!
@misc {manuel_romero_2024,
author = { {Manuel Romero} },
title = { mamba-coder (Revision 214a13a) },
year = 2024,
url = { https://huggingface.co/mrm8488/mamba-coder },
doi = { 10.57967/hf/1673 },
publisher = { Hugging Face }
}
Thanks to mamba-chat for heavily inspiring our work