msarmento's picture
Training complete
79dd1fe verified
metadata
license: mit
base_model: unicamp-dl/ptt5-small-portuguese-vocab
tags:
  - summarization
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: ptt5-small-portuguese-vocab-finetuned-xlsum-pt
    results: []

ptt5-small-portuguese-vocab-finetuned-xlsum-pt

This model is a fine-tuned version of unicamp-dl/ptt5-small-portuguese-vocab on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0360
  • Rouge1: 17.6273
  • Rouge2: 16.731
  • Rougel: 17.6255
  • Rougelsum: 17.629

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.0787 1.0 125 0.0457 17.6273 16.731 17.6255 17.629
0.0428 2.0 250 0.0401 17.6273 16.731 17.6255 17.629
0.0367 3.0 375 0.0374 17.6273 16.731 17.6255 17.629
0.0336 4.0 500 0.0360 17.6273 16.731 17.6255 17.629
0.0316 5.0 625 0.0365 17.6273 16.731 17.6255 17.629
0.0299 6.0 750 0.0361 17.6273 16.731 17.6255 17.629
0.0293 7.0 875 0.0353 17.6273 16.731 17.6255 17.629
0.0283 8.0 1000 0.0362 17.6273 16.731 17.6255 17.629
0.0275 9.0 1125 0.0357 17.6273 16.731 17.6255 17.629
0.0274 10.0 1250 0.0360 17.6273 16.731 17.6255 17.629

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2