v3c_llama_lora

This model is a fine-tuned version of mtzig/prm800k_llama_debug_full on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4195
  • Accuracy: 0.8128
  • Precision: 0.7778
  • Recall: 0.42
  • F1: 0.5455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 765837
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0 0 0.6173 0.7487 1.0 0.06 0.1132
0.3808 0.0492 40 0.5695 0.7487 0.8 0.08 0.1455
0.3036 0.0984 80 0.4816 0.7647 0.6364 0.28 0.3889
0.305 0.1476 120 0.4852 0.8021 0.7241 0.42 0.5316
0.256 0.1967 160 0.4328 0.8021 0.7826 0.36 0.4932
0.2062 0.2459 200 0.4699 0.7861 0.75 0.3 0.4286
0.2004 0.2951 240 0.4480 0.7807 0.7143 0.3 0.4225
0.2241 0.3443 280 0.4449 0.7807 0.7143 0.3 0.4225
0.1505 0.3935 320 0.4088 0.8182 0.75 0.48 0.5854
0.1752 0.4427 360 0.4386 0.7861 0.75 0.3 0.4286
0.2382 0.4919 400 0.4186 0.8128 0.7778 0.42 0.5455
0.238 0.5410 440 0.4313 0.7914 0.7391 0.34 0.4658
0.1448 0.5902 480 0.4161 0.8128 0.7778 0.42 0.5455
0.2096 0.6394 520 0.4251 0.7968 0.75 0.36 0.4865
0.204 0.6886 560 0.4413 0.7914 0.7391 0.34 0.4658
0.1545 0.7378 600 0.4312 0.7968 0.75 0.36 0.4865
0.1883 0.7870 640 0.4288 0.8021 0.76 0.38 0.5067
0.2403 0.8362 680 0.4288 0.8021 0.76 0.38 0.5067
0.1937 0.8853 720 0.4245 0.8021 0.76 0.38 0.5067
0.164 0.9345 760 0.4182 0.8075 0.7692 0.4 0.5263
0.2185 0.9837 800 0.4195 0.8128 0.7778 0.42 0.5455

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mtzig/v3c_llama_lora

Adapter
(1)
this model