fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1732
- Exact Match: 60.2113
- F1: 73.6360
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
6.3258 |
0.5 |
19 |
3.5172 |
10.7394 |
21.8207 |
6.3258 |
0.99 |
38 |
2.7869 |
18.3099 |
28.8508 |
3.5421 |
1.5 |
57 |
2.3403 |
23.4155 |
35.8166 |
3.5421 |
1.99 |
76 |
2.0205 |
30.2817 |
42.8646 |
3.5421 |
2.5 |
95 |
1.7202 |
38.7324 |
51.9337 |
2.0678 |
2.99 |
114 |
1.4839 |
44.5423 |
59.5131 |
2.0678 |
3.5 |
133 |
1.3583 |
50.5282 |
64.3127 |
1.4302 |
3.99 |
152 |
1.2706 |
52.2887 |
66.7363 |
1.4302 |
4.5 |
171 |
1.2389 |
55.1056 |
69.3028 |
1.4302 |
4.99 |
190 |
1.2065 |
55.8099 |
69.9972 |
1.0965 |
5.5 |
209 |
1.1840 |
56.8662 |
70.7353 |
1.0965 |
5.99 |
228 |
1.1887 |
58.4507 |
71.9049 |
1.0965 |
6.5 |
247 |
1.1797 |
58.6268 |
72.5495 |
0.9291 |
6.99 |
266 |
1.1685 |
59.6831 |
73.0495 |
0.9291 |
7.5 |
285 |
1.1713 |
59.1549 |
73.1298 |
0.839 |
7.99 |
304 |
1.1721 |
60.0352 |
73.0300 |
0.839 |
8.5 |
323 |
1.1735 |
60.0352 |
73.5065 |
0.839 |
8.99 |
342 |
1.1725 |
60.2113 |
73.6033 |
0.7854 |
9.5 |
361 |
1.1738 |
60.2113 |
73.6432 |
0.7854 |
9.99 |
380 |
1.1732 |
60.2113 |
73.6360 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2