muhammadravi251001
commited on
Commit
路
cd2261e
1
Parent(s):
31cf8cb
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.1732
|
20 |
+
- Exact Match: 60.2113
|
21 |
+
- F1: 73.6360
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 16
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
|
54 |
+
| 6.3258 | 0.5 | 19 | 3.5172 | 10.7394 | 21.8207 |
|
55 |
+
| 6.3258 | 0.99 | 38 | 2.7869 | 18.3099 | 28.8508 |
|
56 |
+
| 3.5421 | 1.5 | 57 | 2.3403 | 23.4155 | 35.8166 |
|
57 |
+
| 3.5421 | 1.99 | 76 | 2.0205 | 30.2817 | 42.8646 |
|
58 |
+
| 3.5421 | 2.5 | 95 | 1.7202 | 38.7324 | 51.9337 |
|
59 |
+
| 2.0678 | 2.99 | 114 | 1.4839 | 44.5423 | 59.5131 |
|
60 |
+
| 2.0678 | 3.5 | 133 | 1.3583 | 50.5282 | 64.3127 |
|
61 |
+
| 1.4302 | 3.99 | 152 | 1.2706 | 52.2887 | 66.7363 |
|
62 |
+
| 1.4302 | 4.5 | 171 | 1.2389 | 55.1056 | 69.3028 |
|
63 |
+
| 1.4302 | 4.99 | 190 | 1.2065 | 55.8099 | 69.9972 |
|
64 |
+
| 1.0965 | 5.5 | 209 | 1.1840 | 56.8662 | 70.7353 |
|
65 |
+
| 1.0965 | 5.99 | 228 | 1.1887 | 58.4507 | 71.9049 |
|
66 |
+
| 1.0965 | 6.5 | 247 | 1.1797 | 58.6268 | 72.5495 |
|
67 |
+
| 0.9291 | 6.99 | 266 | 1.1685 | 59.6831 | 73.0495 |
|
68 |
+
| 0.9291 | 7.5 | 285 | 1.1713 | 59.1549 | 73.1298 |
|
69 |
+
| 0.839 | 7.99 | 304 | 1.1721 | 60.0352 | 73.0300 |
|
70 |
+
| 0.839 | 8.5 | 323 | 1.1735 | 60.0352 | 73.5065 |
|
71 |
+
| 0.839 | 8.99 | 342 | 1.1725 | 60.2113 | 73.6033 |
|
72 |
+
| 0.7854 | 9.5 | 361 | 1.1738 | 60.2113 | 73.6432 |
|
73 |
+
| 0.7854 | 9.99 | 380 | 1.1732 | 60.2113 | 73.6360 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.26.1
|
79 |
+
- Pytorch 1.13.1+cu117
|
80 |
+
- Datasets 2.2.0
|
81 |
+
- Tokenizers 0.13.2
|