bertiny-finetuned-finer-full

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the 10% of finer-139 dataset for 40 epochs according to paper. It achieves the following results on the evaluation set:

  • Loss: 0.0788
  • Precision: 0.5554
  • Recall: 0.5164
  • F1: 0.5352
  • Accuracy: 0.9887

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0852 1.0 11255 0.0929 1.0 0.0001 0.0002 0.9843
0.08 2.0 22510 0.0840 0.4626 0.0730 0.1261 0.9851
0.0759 3.0 33765 0.0750 0.5113 0.2035 0.2912 0.9865
0.0569 4.0 45020 0.0673 0.4973 0.3281 0.3953 0.9872
0.0488 5.0 56275 0.0635 0.5289 0.3749 0.4388 0.9878
0.0422 6.0 67530 0.0606 0.5258 0.4068 0.4587 0.9880
0.0364 7.0 78785 0.0600 0.5588 0.4186 0.4787 0.9883
0.0307 8.0 90040 0.0589 0.5223 0.4916 0.5065 0.9883
0.0284 9.0 101295 0.0595 0.5588 0.4813 0.5171 0.9887
0.0255 10.0 112550 0.0597 0.5606 0.4944 0.5254 0.9888
0.0223 11.0 123805 0.0600 0.5533 0.4998 0.5252 0.9888
0.0228 12.0 135060 0.0608 0.5290 0.5228 0.5259 0.9885
0.0225 13.0 146315 0.0612 0.5480 0.5111 0.5289 0.9887
0.0204 14.0 157570 0.0634 0.5646 0.5120 0.5370 0.9890
0.0176 15.0 168825 0.0639 0.5611 0.5135 0.5363 0.9889
0.0167 16.0 180080 0.0647 0.5631 0.5120 0.5363 0.9888
0.0161 17.0 191335 0.0665 0.5607 0.5081 0.5331 0.9889
0.0145 18.0 202590 0.0673 0.5437 0.5280 0.5357 0.9887
0.0166 19.0 213845 0.0687 0.5722 0.5008 0.5341 0.9889
0.0155 20.0 225100 0.0685 0.5325 0.5337 0.5331 0.9885
0.0142 21.0 236355 0.0705 0.5626 0.5166 0.5386 0.9890
0.0127 22.0 247610 0.0694 0.5426 0.5358 0.5392 0.9887
0.0112 23.0 258865 0.0721 0.5591 0.5129 0.5351 0.9888
0.0123 24.0 270120 0.0733 0.5715 0.5081 0.5380 0.9889
0.0116 25.0 281375 0.0735 0.5621 0.5123 0.5361 0.9888
0.0112 26.0 292630 0.0739 0.5634 0.5181 0.5398 0.9889
0.0108 27.0 303885 0.0753 0.5548 0.5155 0.5344 0.9887
0.0125 28.0 315140 0.0746 0.5507 0.5221 0.5360 0.9886
0.0093 29.0 326395 0.0762 0.5602 0.5156 0.5370 0.9888
0.0094 30.0 337650 0.0762 0.5625 0.5157 0.5381 0.9889
0.0117 31.0 348905 0.0767 0.5519 0.5195 0.5352 0.9887
0.0091 32.0 360160 0.0772 0.5501 0.5198 0.5345 0.9887
0.0109 33.0 371415 0.0775 0.5635 0.5097 0.5353 0.9888
0.0094 34.0 382670 0.0776 0.5467 0.5216 0.5339 0.9887
0.009 35.0 393925 0.0782 0.5601 0.5139 0.5360 0.9889
0.0093 36.0 405180 0.0780 0.5568 0.5156 0.5354 0.9888
0.0087 37.0 416435 0.0783 0.5588 0.5143 0.5356 0.9888
0.009 38.0 427690 0.0785 0.5483 0.5178 0.5326 0.9887
0.0094 39.0 438945 0.0787 0.5541 0.5154 0.5340 0.9887
0.0088 40.0 450200 0.0788 0.5554 0.5164 0.5352 0.9887

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
115
Safetensors
Model size
4.41M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for muhtasham/bert-tiny-finetuned-finer-longer

Finetuned
(50)
this model

Evaluation results