murat_chem_model

This model is a fine-tuned version of alvaroalon2/biobert_chemical_ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0046
  • Chemical: {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}
  • Micro avg: {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}
  • Macro avg: {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}
  • Weighted avg: {'precision': 0.9729397293972939, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Chemical Micro avg Macro avg Weighted avg
0.0203 1.0 14139 0.0103 {'precision': 0.937424789410349, 'recall': 0.9701120797011208, 'f1-score': 0.9534883720930233, 'support': 803} {'precision': 0.937424789410349, 'recall': 0.9701120797011208, 'f1-score': 0.9534883720930233, 'support': 803} {'precision': 0.937424789410349, 'recall': 0.9701120797011208, 'f1-score': 0.9534883720930233, 'support': 803} {'precision': 0.937424789410349, 'recall': 0.9701120797011208, 'f1-score': 0.9534883720930234, 'support': 803}
0.009 2.0 28278 0.0061 {'precision': 0.9585870889159561, 'recall': 0.9800747198007472, 'f1-score': 0.9692118226600985, 'support': 803} {'precision': 0.9585870889159561, 'recall': 0.9800747198007472, 'f1-score': 0.9692118226600985, 'support': 803} {'precision': 0.9585870889159561, 'recall': 0.9800747198007472, 'f1-score': 0.9692118226600985, 'support': 803} {'precision': 0.9585870889159561, 'recall': 0.9800747198007472, 'f1-score': 0.9692118226600985, 'support': 803}
0.0024 3.0 42417 0.0046 {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803} {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803} {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803} {'precision': 0.9729397293972939, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for muratti18462/murat_chem_model

Finetuned
(4)
this model