murat_chem_model
This model is a fine-tuned version of alvaroalon2/biobert_chemical_ner on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0046
- Chemical: {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}
- Micro avg: {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}
- Macro avg: {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}
- Weighted avg: {'precision': 0.9729397293972939, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Chemical | Micro avg | Macro avg | Weighted avg |
---|---|---|---|---|---|---|---|
0.0203 | 1.0 | 14139 | 0.0103 | {'precision': 0.937424789410349, 'recall': 0.9701120797011208, 'f1-score': 0.9534883720930233, 'support': 803} | {'precision': 0.937424789410349, 'recall': 0.9701120797011208, 'f1-score': 0.9534883720930233, 'support': 803} | {'precision': 0.937424789410349, 'recall': 0.9701120797011208, 'f1-score': 0.9534883720930233, 'support': 803} | {'precision': 0.937424789410349, 'recall': 0.9701120797011208, 'f1-score': 0.9534883720930234, 'support': 803} |
0.009 | 2.0 | 28278 | 0.0061 | {'precision': 0.9585870889159561, 'recall': 0.9800747198007472, 'f1-score': 0.9692118226600985, 'support': 803} | {'precision': 0.9585870889159561, 'recall': 0.9800747198007472, 'f1-score': 0.9692118226600985, 'support': 803} | {'precision': 0.9585870889159561, 'recall': 0.9800747198007472, 'f1-score': 0.9692118226600985, 'support': 803} | {'precision': 0.9585870889159561, 'recall': 0.9800747198007472, 'f1-score': 0.9692118226600985, 'support': 803} |
0.0024 | 3.0 | 42417 | 0.0046 | {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803} | {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803} | {'precision': 0.972939729397294, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803} | {'precision': 0.9729397293972939, 'recall': 0.9850560398505604, 'f1-score': 0.9789603960396039, 'support': 803} |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for muratti18462/murat_chem_model
Base model
alvaroalon2/biobert_chemical_ner