murat_chem_model_extra_data
This model is a fine-tuned version of alvaroalon2/biobert_chemical_ner on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0089
- Chemical: {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900}
- Micro avg: {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900}
- Macro avg: {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900}
- Weighted avg: {'precision': 0.9656699889258028, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539658, 'support': 900}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Chemical | Micro avg | Macro avg | Weighted avg |
---|---|---|---|---|---|---|---|
0.0266 | 1.0 | 16198 | 0.0113 | {'precision': 0.9423503325942351, 'recall': 0.9444444444444444, 'f1-score': 0.9433962264150944, 'support': 900} | {'precision': 0.9423503325942351, 'recall': 0.9444444444444444, 'f1-score': 0.9433962264150944, 'support': 900} | {'precision': 0.9423503325942351, 'recall': 0.9444444444444444, 'f1-score': 0.9433962264150944, 'support': 900} | {'precision': 0.9423503325942351, 'recall': 0.9444444444444444, 'f1-score': 0.9433962264150944, 'support': 900} |
0.0092 | 2.0 | 32396 | 0.0077 | {'precision': 0.9679203539823009, 'recall': 0.9722222222222222, 'f1-score': 0.9700665188470067, 'support': 900} | {'precision': 0.9679203539823009, 'recall': 0.9722222222222222, 'f1-score': 0.9700665188470067, 'support': 900} | {'precision': 0.9679203539823009, 'recall': 0.9722222222222222, 'f1-score': 0.9700665188470067, 'support': 900} | {'precision': 0.9679203539823009, 'recall': 0.9722222222222222, 'f1-score': 0.9700665188470067, 'support': 900} |
0.0051 | 3.0 | 48594 | 0.0089 | {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} | {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} | {'precision': 0.9656699889258029, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539656, 'support': 900} | {'precision': 0.9656699889258028, 'recall': 0.9688888888888889, 'f1-score': 0.9672767609539658, 'support': 900} |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for muratti18462/murat_chem_model_extra_data
Base model
alvaroalon2/biobert_chemical_ner