murat_chem_model_extra_data_3epochlr5e8

This model is a fine-tuned version of alvaroalon2/biobert_chemical_ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0524
  • Chemical: {'precision': 0.7696030977734754, 'recall': 0.8229813664596274, 'f1-score': 0.7953976988494248, 'support': 966}
  • Micro avg: {'precision': 0.7696030977734754, 'recall': 0.8229813664596274, 'f1-score': 0.7953976988494248, 'support': 966}
  • Macro avg: {'precision': 0.7696030977734754, 'recall': 0.8229813664596274, 'f1-score': 0.7953976988494248, 'support': 966}
  • Weighted avg: {'precision': 0.7696030977734754, 'recall': 0.8229813664596274, 'f1-score': 0.7953976988494248, 'support': 966}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-08
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Chemical Micro avg Macro avg Weighted avg
0.1661 1.0 16198 0.0916 {'precision': 0.757026291931097, 'recall': 0.8643892339544513, 'f1-score': 0.8071532141130981, 'support': 966} {'precision': 0.757026291931097, 'recall': 0.8643892339544513, 'f1-score': 0.8071532141130981, 'support': 966} {'precision': 0.757026291931097, 'recall': 0.8643892339544513, 'f1-score': 0.8071532141130981, 'support': 966} {'precision': 0.757026291931097, 'recall': 0.8643892339544513, 'f1-score': 0.8071532141130981, 'support': 966}
0.0663 2.0 32396 0.0570 {'precision': 0.7653846153846153, 'recall': 0.8240165631469979, 'f1-score': 0.7936191425722832, 'support': 966} {'precision': 0.7653846153846153, 'recall': 0.8240165631469979, 'f1-score': 0.7936191425722832, 'support': 966} {'precision': 0.7653846153846153, 'recall': 0.8240165631469979, 'f1-score': 0.7936191425722832, 'support': 966} {'precision': 0.7653846153846153, 'recall': 0.8240165631469979, 'f1-score': 0.7936191425722832, 'support': 966}
0.0564 3.0 48594 0.0524 {'precision': 0.7696030977734754, 'recall': 0.8229813664596274, 'f1-score': 0.7953976988494248, 'support': 966} {'precision': 0.7696030977734754, 'recall': 0.8229813664596274, 'f1-score': 0.7953976988494248, 'support': 966} {'precision': 0.7696030977734754, 'recall': 0.8229813664596274, 'f1-score': 0.7953976988494248, 'support': 966} {'precision': 0.7696030977734754, 'recall': 0.8229813664596274, 'f1-score': 0.7953976988494248, 'support': 966}

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for muratti18462/murat_chem_model_extra_data_3epochlr5e8

Finetuned
(4)
this model