|
--- |
|
license: mit |
|
base_model: urduhack/roberta-urdu-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mteb/amazon_massive_intent |
|
model-index: |
|
- name: UrduIntentClassification |
|
results: [] |
|
widget: |
|
- text: جنگ کی کيا نئی خبر ہے |
|
example_title: News |
|
- text: ہر ہفتے کے دن آٹھ کے لیے الارم سیٹ کریں |
|
example_title: Alarm |
|
- text: میں mcdonald کو ایک شکایت ٹویٹ کرنا چاہتا ہوں |
|
example_title: Social |
|
language: |
|
- ur |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# UrduIntentClassification |
|
|
|
This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7482 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.3314 | 1.0 | 720 | 1.0549 | |
|
| 0.7468 | 2.0 | 1440 | 0.7997 | |
|
| 0.4117 | 3.0 | 2160 | 0.7482 | |
|
| 0.3267 | 4.0 | 2880 | 0.8247 | |
|
| 0.2292 | 5.0 | 3600 | 0.9014 | |
|
| 0.0356 | 6.0 | 4320 | 0.9446 | |
|
| 0.0123 | 7.0 | 5040 | 0.9757 | |
|
| 0.0208 | 8.0 | 5760 | 0.9854 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |