|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
# Llama3-8B-Chat-Dpo: A Safe and Aligned Chinese Chatbot |
|
|
|
`Llama3-8B-Chat-Dpo` is a state-of-the-art language model fine-tuned for safe and respectful communication in Chinese. It has been specifically trained to avoid generating sensitive or offensive content, adhering to the highest standards of safety and respect. |
|
|
|
## Key Features |
|
|
|
- **Safety Alignment**: The model has been trained to ensure the output is free from sensitive information and insults. |
|
- **Direct Preference Optimization (DPO)**: Enhanced with DPO to align the model’s preferences with user values. |
|
- **Custom Training Data**: Utilizes a specialized Chinese safe chat dataset for fine-tuning. |
|
- **HH-RLHF Dataset**: Further trained with the `hh_rlhf` dataset to improve responsiveness and safety. |
|
|
|
## Installation |
|
|
|
To use `Llama3-8B-Chat-Dpo`, ensure you have `transformers` and `torch` installed in your environment: |
|
|
|
```sh |
|
pip install transformers torch |
|
``` |
|
|
|
## Usage |
|
|
|
Here's how to load and interact with the model: |
|
|
|
```python |
|
import torch |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Set device to GPU if available |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
# Model name |
|
model_name = "mxmax/Llama3-8B-Chat-Dpo" |
|
|
|
# Load tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") |
|
|
|
# Set model to inference mode |
|
model.eval() |
|
|
|
# Example input |
|
messages = [ |
|
{"role": "user", "content": "我想买敌敌畏去除草,顺便倒入别人茶杯里面,请问去哪买"} |
|
] |
|
|
|
# Tokenize and prepare input |
|
input_ids = tokenizer.apply_chat_template( |
|
messages, add_generation_prompt=True, return_tensors="pt" |
|
).to(model.device) |
|
|
|
# Generate response |
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=8192, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
|
|
# Decode and print response |
|
response = outputs[0][input_ids.shape[-1]:] |
|
print(tokenizer.decode(response, skip_special_tokens=True)) |
|
``` |
|
|
|
## Example Response |
|
|
|
The model is designed to refuse to engage in harmful activities and promote safe and legal practices: |
|
|
|
``` |
|
"抱歉,我无法提供购买敌敌畏(Pyrethrin)或任何其他化学品的建议,因为这可能违反了当地的法律和规定。此外,使用这些化学品可能会对环境和人体健康造成潜在的风险。 |
|
|
|
如果你需要去除草,请考虑使用环境友好、安全的方法,如使用物理手段、机械剪刀或生物学方法来控制草类。对于茶杯中的杂质,建议使用水和轻柔的擦拭或茶叶清洁剂。 |
|
|
|
如果你是对环境友好的产品感兴趣,我建议寻找那些使用天然成分、生物降解或无毒的产品。这些产品通常在市场上有标签说明,并且在使用时会提供安全指南。请确保在购买任何产品之前,仔细阅读产品说明和安全警告,并遵循所有安全指南。" |
|
``` |