nadejdatarabukina's picture
End of training
a245f77 verified
---
library_name: peft
license: llama3
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f9f1d1ec-0c69-420e-837a-9c786b0732d3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9b44b6a631dcb1cf_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9b44b6a631dcb1cf_train_data.json
type:
field_instruction: original
field_output: reference
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config:
max_steps: 50
weight_decay: 0.01
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nadejdatarabukina/f9f1d1ec-0c69-420e-837a-9c786b0732d3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/9b44b6a631dcb1cf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 70
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f9f1d1ec-0c69-420e-837a-9c786b0732d3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f9f1d1ec-0c69-420e-837a-9c786b0732d3
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# f9f1d1ec-0c69-420e-837a-9c786b0732d3
This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0510
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3615 | 0.0015 | 1 | 0.4058 |
| 0.2466 | 0.0073 | 5 | 0.3781 |
| 0.1169 | 0.0145 | 10 | 0.1243 |
| 0.0837 | 0.0218 | 15 | 0.0725 |
| 0.0711 | 0.0291 | 20 | 0.0678 |
| 0.0611 | 0.0364 | 25 | 0.0567 |
| 0.0387 | 0.0436 | 30 | 0.0552 |
| 0.0709 | 0.0509 | 35 | 0.0525 |
| 0.1079 | 0.0582 | 40 | 0.0513 |
| 0.0142 | 0.0655 | 45 | 0.0510 |
| 0.0227 | 0.0727 | 50 | 0.0510 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1