|
--- |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- bleu |
|
- rouge |
|
- meteor |
|
pipeline_tag: text2text-generation |
|
widget: |
|
- text: >- |
|
name: Bug report\nabout: Create a report to help us improve\ntitle: |
|
<|EMPTY|>\nlabels: <|EMPTY|>\nassignees: <|EMPTY|>\nheadlines_type: |
|
<|MASK|>\nheadlines: <|MASK|>\nsummary: This issue report aims to describe a |
|
bug encountered while using the software. It includes a clear and concise |
|
description of the issue, steps to reproduce the behavior, expected |
|
behavior, screenshots (if applicable), and relevant versions of the |
|
operating system, IIS, Django, and Python. Additional context may also be |
|
provided to provide further details about the problem. |
|
example_title: Example 1 |
|
datasets: |
|
- nafisehNik/GIRT-Instruct |
|
--- |
|
|
|
# GIRT-Model |
|
|
|
paper: https://arxiv.org/abs/2402.02632 |
|
|
|
demo: https://huggingface.co/spaces/nafisehNik/girt-space |
|
|
|
This model is fine-tuned to generate issue report templates based on the input instruction provided. It has been fine-tuned on [GIRT-Instruct](https://huggingface.co/datasets/nafisehNik/GIRT-Instruct) data. |
|
|
|
## Usage |
|
|
|
```python |
|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
# load model and tokenizer |
|
model = AutoModelForSeq2SeqLM.from_pretrained('nafisehNik/girt-t5-base') |
|
tokenizer = AutoTokenizer.from_pretrained(nafisehNik/girt-t5-base) |
|
|
|
# method for computing issue report template generation |
|
def compute(sample, top_p, top_k, do_sample, max_length, min_length): |
|
|
|
inputs = tokenizer(sample, return_tensors="pt").to('cpu') |
|
|
|
outputs = model.generate( |
|
**inputs, |
|
min_length= min_length, |
|
max_length=max_length, |
|
do_sample=do_sample, |
|
top_p=top_p, |
|
top_k=top_k).to('cpu') |
|
|
|
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=False) |
|
generated_text = generated_texts[0] |
|
|
|
replace_dict = { |
|
'\n ': '\n', |
|
'</s>': '', |
|
'<pad> ': '', |
|
'<pad>': '', |
|
'<unk>!--': '<!--', |
|
'<unk>': '', |
|
} |
|
|
|
postprocess_text = generated_text |
|
for key, value in replace_dict.items(): |
|
postprocess_text = postprocess_text.replace(key, value) |
|
|
|
return postprocess_text |
|
|
|
prompt = "YOUR INPUT INSTRUCTION" |
|
result = compute(prompt, top_p = 0.92, top_k=0, do_sample=True, max_length=300, min_length=30) |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@article{nikeghbal2024girt, |
|
title={GIRT-Model: Automated Generation of Issue Report Templates}, |
|
author={Nikeghbal, Nafiseh and Kargaran, Amir Hossein and Heydarnoori, Abbas}, |
|
journal={arXiv preprint arXiv:2402.02632}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|