ViRanker / README.md
namdp-ptit's picture
Update README.md
8968c80 verified
---
language:
- vi
license: apache-2.0
library_name: transformers
tags:
- transformers
- cross-encoder
- rerank
datasets:
- unicamp-dl/mmarco
pipeline_tag: text-classification
widget:
- text: tỉnh nào diện tích lớn nhất việt nam
output:
- label: nghệ an diện tích lớn nhất việt nam
score: 0.99999
- label: bắc ninh diện tích nhỏ nhất việt nam
score: 0.0001
---
# Reranker
* [Usage](#usage)
* [Using FlagEmbedding](#using-flagembedding)
* [Using Huggingface transformers](#using-huggingface-transformers)
* [Fine tune](#fine-tune)
* [Data format](#data-format)
* [Performance](#performance)
* [Contact](#contact)
* [Support The Project](#support-the-project)
* [Citation](#citation)
Different from embedding model, reranker uses question and document as input and directly output similarity instead of
embedding.
You can get a relevance score by inputting query and passage to the reranker.
And the score can be mapped to a float value in [0,1] by sigmoid function.
## Usage
### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('namdp-ptit/ViRanker',
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['ai là vị vua cuối cùng của việt nam', 'vua bảo đại là vị vua cuối cùng của nước ta'])
print(score) # 13.71875
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
score = reranker.compute_score(['ai là vị vua cuối cùng của việt nam', 'vua bảo đại là vị vua cuối cùng của nước ta'],
normalize=True)
print(score) # 0.99999889840464
scores = reranker.compute_score(
[
['ai là vị vua cuối cùng của việt nam', 'vua bảo đại là vị vua cuối cùng của nước ta'],
['ai là vị vua cuối cùng của việt nam', 'lý nam đế là vị vua đầu tiên của nước ta']
]
)
print(scores) # [13.7265625, -8.53125]
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
scores = reranker.compute_score(
[
['ai là vị vua cuối cùng của việt nam', 'vua bảo đại là vị vua cuối của nước ta'],
['ai là vị vua cuối cùng của việt nam', 'lý nam đế là vị vua đầu tiên của nước ta']
],
normalize=True
)
print(scores) # [0.99999889840464, 0.00019716942196222918]
```
### Using Huggingface transformers
```
pip install -U transformers
```
Get relevance scores (higher scores indicate more relevance):
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('namdp-ptit/ViRanker')
model = AutoModelForSequenceClassification.from_pretrained('namdp-ptit/ViRanker')
model.eval()
pairs = [
['ai là vị vua cuối cùng của việt nam', 'vua bảo đại là vị vua cuối cùng của nước ta'],
['ai là vị vua cuối cùng của việt nam', 'lý nam đế là vị vua đầu tiên của nước ta']
],
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
## Fine-tune
### Data Format
Train data should be a json file, where each line is a dict like this:
```
{"query": str, "pos": List[str], "neg": List[str]}
```
`query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts. If you have no negative
texts for a query, you can random sample some from the entire corpus as the negatives.
Besides, for each query in the train data, we used LLMs to generate hard negative for them by asking LLMs to create a
document that is the opposite one of the documents in 'pos'.
## Performance
Below is a comparision table of the results we achieved compared to some other pre-trained Cross-Encoders on
the [MS MMarco Passage Reranking - Vi - Dev](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset.
| Model-Name | NDCG@3 | MRR@3 | NDCG@5 | MRR@5 | NDCG@10 | MRR@10 | Docs / Sec |
|-----------------------------------------------------------------------------------------------------------------------------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
| [namdp-ptit/ViRanker](https://huggingface.co/namdp-ptit/ViRanker) | **0.6815** | **0.6641** | 0.6983 | **0.6894** | 0.7302 | **0.7107** | 2.02
| [itdainb/PhoRanker](https://huggingface.co/itdainb/PhoRanker) | 0.6625 | 0.6458 | **0.7147** | 0.6731 | **0.7422** | 0.6830 | **15**
| [kien-vu-uet/finetuned-phobert-passage-rerank-best-eval](https://huggingface.co/kien-vu-uet/finetuned-phobert-passage-rerank-best-eval) | 0.0963 | 0.0883 | 0.1396 | 0.1131 | 0.1681 | 0.1246 | **15**
| [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | 0.6087 | 0.5841 | 0.6513 | 0.6062 | 0.6872 | 0.62091 | 3.51
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | 0.6088 | 0.5908 | 0.6446 | 0.6108 | 0.6785 | 0.6249 | 1.29
## Contact
**Email**: [email protected]
**LinkedIn**: [Dang Phuong Nam](https://www.linkedin.com/in/dang-phuong-nam-157912288/)
**Facebook**: [Phương Nam](https://www.facebook.com/phuong.namdang.7146557)
## Support The Project
If you find this project helpful and wish to support its ongoing development, here are some ways you can contribute:
1. **Star the Repository**: Show your appreciation by starring the repository. Your support motivates further
development
and enhancements.
2. **Contribute**: We welcome your contributions! You can help by reporting bugs, submitting pull requests, or
suggesting new features.
3. **Donate**: If you’d like to support financially, consider making a donation. You can donate through:
- Vietcombank: 9912692172 - DANG PHUONG NAM
Thank you for your support!
## Citation
Please cite as
```Plaintext
@misc{ViRanker,
title={ViRanker: A Cross-encoder Model for Vietnamese Text Ranking},
author={Nam Dang Phuong},
year={2024},
publisher={Huggingface},
}
```