🧪 Part of an Experiment
This model is meant to investigate the effects of changing LoRA rank on the same tune. Learning Rate was also increased to 2e-5 from 8e-6
Dumpling-Qwen2.5-7B-1k-r64-2e-5
nbeerbower/EVA-abliterated-Qwen2.5-7B finetuned on:
- nbeerbower/GreatFirewall-DPO
- nbeerbower/Schule-DPO
- nbeerbower/Purpura-DPO
- nbeerbower/Arkhaios-DPO
- jondurbin/truthy-dpo-v0.1
- antiven0m/physical-reasoning-dpo
- flammenai/Date-DPO-NoAsterisks
- flammenai/Prude-Phi3-DPO
- Atsunori/HelpSteer2-DPO (1,000 samples)
- jondurbin/gutenberg-dpo-v0.1
- nbeerbower/gutenberg2-dpo
- nbeerbower/gutenberg-moderne-dpo.
Method
QLoRA ORPO tune with 2x RTX 3090 for 2 epochs.
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
# LoRA config
peft_config = LoraConfig(
r=64,
lora_alpha=64,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj']
)
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.