|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- nbroad/company_names |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-v3-base-company-names |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: nbroad/company_names |
|
type: nbroad/company_names |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7739696312364425 |
|
- name: Recall |
|
type: recall |
|
value: 0.7962863774326013 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7849694196330357 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9769126125154315 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-base-company-names |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the nbroad/company_names dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0693 |
|
- Precision: 0.7740 |
|
- Recall: 0.7963 |
|
- F1: 0.7850 |
|
- Accuracy: 0.9769 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 48 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0752 | 1.0 | 2126 | 0.0664 | 0.7416 | 0.7979 | 0.7687 | 0.9757 | |
|
| 0.0484 | 2.0 | 4252 | 0.0652 | 0.7725 | 0.7903 | 0.7813 | 0.9768 | |
|
| 0.0415 | 3.0 | 6378 | 0.0693 | 0.7740 | 0.7963 | 0.7850 | 0.9769 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.14.1 |
|
|