Finetuned DialoGPT model on Spanish Conversations
This model was finetuned from the original DialoGPT-medium model on subtitles from Spanish movies and telenovelas from the awesome OpenSubtitle dataset.
DialoGPT paper: https://arxiv.org/abs/1911.00536
Some example dialog from the model:
Role | Response |
---|---|
User | ¿Cómo está el clima hoy? |
Bot | Muy bien. |
User | Eso es bueno escuchar. ¿Vas a ir a la playa? |
Bot | No, también puedo regresar. |
User | Oh bien, bueno, iré a la playa más tarde. |
Bot | ¡No! |
User | ¿Qué está mal con eso? |
Bot | ¡Cómo que no! |
User | Estoy confundido, ¿por qué no puedo ir a la playa? |
Bot | ¡Cómo que no! |
User | Explícamelo por favor. |
Bot | ¡No! |
Using the model
Example code for trying out the model (taken directly from the DialoGPT-medium model card):
from transformers import AutoModelWithLMHead, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("ncoop57/DiGPTame-medium")
model = AutoModelWithLMHead.from_pretrained("ncoop57/DiGPTame-medium")
# Let's chat for 5 lines
for step in range(5):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# pretty print last ouput tokens from bot
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
Training your own model
If you would like to finetune your own model or finetune this Spanish model, please checkout my blog post on that exact topic! https://nathancooper.io/i-am-a-nerd/chatbot/deep-learning/gpt2/2020/05/12/chatbot-part-1.html
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.