wav2vec2-mms-1b-malayalam-colab-CV17.0

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7578
  • Wer: 1.0316
  • Cer: 0.7469
  • Bleu: {'bleu': 0.0, 'precisions': [0.0008639308855291577, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7118010694449419, 'length_ratio': 0.7462927143778207, 'translation_length': 2315, 'reference_length': 3102}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
21.8941 3.1496 200 14.1370 1.0 1.0292 {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.08102287291060646, 'length_ratio': 0.2846550612508059, 'translation_length': 883, 'reference_length': 3102}
8.5677 6.2992 400 6.3226 1.0071 0.8568 {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.2500351312096836, 'length_ratio': 0.4190844616376531, 'translation_length': 1300, 'reference_length': 3102}
6.6037 9.4488 600 5.6520 1.0351 0.7789 {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.6082895680797644, 'length_ratio': 0.6679561573178594, 'translation_length': 2072, 'reference_length': 3102}
6.0799 12.5984 800 5.2294 1.0574 0.7594 {'bleu': 0.0, 'precisions': [0.00041631973355537054, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7471989379147929, 'length_ratio': 0.7743391360412637, 'translation_length': 2402, 'reference_length': 3102}
5.7804 15.7480 1000 5.1733 1.0329 0.7629 {'bleu': 0.0, 'precisions': [0.0, 0.0, 0.0, 0.0], 'brevity_penalty': 0.6734028056038747, 'length_ratio': 0.7166344294003868, 'translation_length': 2223, 'reference_length': 3102}
5.4453 18.8976 1200 4.9821 1.0525 0.7467 {'bleu': 0.0, 'precisions': [0.0004042037186742118, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7758159728382187, 'length_ratio': 0.7975499677627337, 'translation_length': 2474, 'reference_length': 3102}
5.2983 22.0472 1400 4.8784 1.0297 0.7521 {'bleu': 0.0, 'precisions': [0.0008806693086745927, 0.0, 0.0, 0.0], 'brevity_penalty': 0.693559602972643, 'length_ratio': 0.7321083172147002, 'translation_length': 2271, 'reference_length': 3102}
5.0862 25.1969 1600 4.7948 1.0358 0.7446 {'bleu': 0.0, 'precisions': [0.0008399832003359933, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7387365301547462, 'length_ratio': 0.7675693101225016, 'translation_length': 2381, 'reference_length': 3102}
4.9884 28.3465 1800 4.7578 1.0316 0.7479 {'bleu': 0.0, 'precisions': [0.000864304235090752, 0.0, 0.0, 0.0], 'brevity_penalty': 0.711389009553914, 'length_ratio': 0.7459703417150225, 'translation_length': 2314, 'reference_length': 3102}
5.0447 31.4961 2000 4.7578 1.0316 0.7469 {'bleu': 0.0, 'precisions': [0.0008639308855291577, 0.0, 0.0, 0.0], 'brevity_penalty': 0.7118010694449419, 'length_ratio': 0.7462927143778207, 'translation_length': 2315, 'reference_length': 3102}

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
965M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for ndeclarke/wav2vec2-mms-1b-malayalam-colab-CV17.0

Finetuned
(214)
this model

Evaluation results