|
--- |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: fintunned-v2-roberta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fintunned-v2-roberta |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2012 |
|
- Accuracy: 0.95 |
|
- F1: 0.9504 |
|
- Precision: 0.9517 |
|
- Recall: 0.9498 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 2.3929 | 0.45 | 50 | 2.2723 | 0.2773 | 0.1892 | 0.2335 | 0.2947 | |
|
| 1.2165 | 0.91 | 100 | 0.4612 | 0.8818 | 0.8839 | 0.8978 | 0.8825 | |
|
| 0.3732 | 1.36 | 150 | 0.3472 | 0.9045 | 0.9058 | 0.9092 | 0.9060 | |
|
| 0.3306 | 1.82 | 200 | 0.3077 | 0.9227 | 0.9249 | 0.9267 | 0.9250 | |
|
| 0.2537 | 2.27 | 250 | 0.2419 | 0.9273 | 0.9281 | 0.9290 | 0.9291 | |
|
| 0.0997 | 2.73 | 300 | 0.2012 | 0.95 | 0.9504 | 0.9517 | 0.9498 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|