llm3br256
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the goavanto2-oneshot-train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0032
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0512 | 0.0741 | 5 | 0.0457 |
0.034 | 0.1481 | 10 | 0.0291 |
0.0258 | 0.2222 | 15 | 0.0234 |
0.0185 | 0.2963 | 20 | 0.0186 |
0.014 | 0.3704 | 25 | 0.0155 |
0.0178 | 0.4444 | 30 | 0.0133 |
0.0157 | 0.5185 | 35 | 0.0116 |
0.014 | 0.5926 | 40 | 0.0102 |
0.0098 | 0.6667 | 45 | 0.0091 |
0.0074 | 0.7407 | 50 | 0.0082 |
0.007 | 0.8148 | 55 | 0.0076 |
0.0078 | 0.8889 | 60 | 0.0073 |
0.0095 | 0.9630 | 65 | 0.0070 |
0.0064 | 1.0370 | 70 | 0.0067 |
0.0114 | 1.1111 | 75 | 0.0064 |
0.0059 | 1.1852 | 80 | 0.0060 |
0.0091 | 1.2593 | 85 | 0.0059 |
0.0051 | 1.3333 | 90 | 0.0055 |
0.0093 | 1.4074 | 95 | 0.0054 |
0.0048 | 1.4815 | 100 | 0.0051 |
0.0042 | 1.5556 | 105 | 0.0050 |
0.0044 | 1.6296 | 110 | 0.0049 |
0.0047 | 1.7037 | 115 | 0.0048 |
0.0047 | 1.7778 | 120 | 0.0047 |
0.0054 | 1.8519 | 125 | 0.0046 |
0.0042 | 1.9259 | 130 | 0.0043 |
0.0053 | 2.0 | 135 | 0.0043 |
0.0023 | 2.0741 | 140 | 0.0043 |
0.0053 | 2.1481 | 145 | 0.0043 |
0.0029 | 2.2222 | 150 | 0.0042 |
0.0036 | 2.2963 | 155 | 0.0041 |
0.0035 | 2.3704 | 160 | 0.0041 |
0.0031 | 2.4444 | 165 | 0.0041 |
0.003 | 2.5185 | 170 | 0.0040 |
0.0039 | 2.5926 | 175 | 0.0040 |
0.0036 | 2.6667 | 180 | 0.0038 |
0.0042 | 2.7407 | 185 | 0.0037 |
0.0032 | 2.8148 | 190 | 0.0036 |
0.0041 | 2.8889 | 195 | 0.0036 |
0.0053 | 2.9630 | 200 | 0.0035 |
0.0036 | 3.0370 | 205 | 0.0034 |
0.0054 | 3.1111 | 210 | 0.0035 |
0.0047 | 3.1852 | 215 | 0.0036 |
0.0022 | 3.2593 | 220 | 0.0034 |
0.003 | 3.3333 | 225 | 0.0034 |
0.0019 | 3.4074 | 230 | 0.0033 |
0.0034 | 3.4815 | 235 | 0.0034 |
0.0025 | 3.5556 | 240 | 0.0033 |
0.002 | 3.6296 | 245 | 0.0033 |
0.0015 | 3.7037 | 250 | 0.0033 |
0.0027 | 3.7778 | 255 | 0.0033 |
0.0015 | 3.8519 | 260 | 0.0032 |
0.0017 | 3.9259 | 265 | 0.0032 |
0.0027 | 4.0 | 270 | 0.0031 |
0.0014 | 4.0741 | 275 | 0.0031 |
0.0015 | 4.1481 | 280 | 0.0032 |
0.0014 | 4.2222 | 285 | 0.0032 |
0.002 | 4.2963 | 290 | 0.0033 |
0.0021 | 4.3704 | 295 | 0.0033 |
0.0035 | 4.4444 | 300 | 0.0032 |
0.0014 | 4.5185 | 305 | 0.0032 |
0.0023 | 4.5926 | 310 | 0.0032 |
0.0016 | 4.6667 | 315 | 0.0032 |
0.0016 | 4.7407 | 320 | 0.0032 |
0.0015 | 4.8148 | 325 | 0.0032 |
0.0014 | 4.8889 | 330 | 0.0032 |
0.0017 | 4.9630 | 335 | 0.0032 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 0
Model tree for neel-nanonets/goavanto_2
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct