m3e-ernie-xbase-zh / README.md
neofung's picture
Update README.md
c05fab5 verified
|
raw
history blame
29.3 kB
metadata
language:
  - zh
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - mteb
model-index:
  - name: zh
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: b44c3b011063adb25877c13823db83bb193913c4
        metrics:
          - type: cos_sim_pearson
            value: 36.298796333105045
          - type: cos_sim_spearman
            value: 37.341572623120264
          - type: euclidean_pearson
            value: 36.64243583928722
          - type: euclidean_spearman
            value: 37.34155251464738
          - type: manhattan_pearson
            value: 36.619985504965335
          - type: manhattan_spearman
            value: 37.33234474856907
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
        metrics:
          - type: cos_sim_pearson
            value: 39.479909222662606
          - type: cos_sim_spearman
            value: 41.931326522020626
          - type: euclidean_pearson
            value: 42.96034449758286
          - type: euclidean_spearman
            value: 41.9313332762864
          - type: manhattan_pearson
            value: 42.91465081487226
          - type: manhattan_spearman
            value: 41.891856959411506
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 47.553999999999995
          - type: f1
            value: 44.225487078758015
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
        metrics:
          - type: cos_sim_pearson
            value: 67.41540794294842
          - type: cos_sim_spearman
            value: 71.19680444103656
          - type: euclidean_pearson
            value: 69.59374493550702
          - type: euclidean_spearman
            value: 71.19680789937125
          - type: manhattan_pearson
            value: 69.57503405147493
          - type: manhattan_spearman
            value: 71.19417171802891
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
        metrics:
          - type: v_measure
            value: 40.006865414718185
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
        metrics:
          - type: v_measure
            value: 38.199450302104204
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
        metrics:
          - type: map
            value: 74.51766322144272
          - type: mrr
            value: 78.04591269841269
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: 23d186750531a14a0357ca22cd92d712fd512ea0
        metrics:
          - type: map
            value: 75.6387269126998
          - type: mrr
            value: 79.5725
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
        metrics:
          - type: map_at_1
            value: 16.788
          - type: map_at_10
            value: 25.224999999999998
          - type: map_at_100
            value: 26.862000000000002
          - type: map_at_1000
            value: 27.037
          - type: map_at_3
            value: 22.398
          - type: map_at_5
            value: 23.889
          - type: mrr_at_1
            value: 26.656999999999996
          - type: mrr_at_10
            value: 33.501999999999995
          - type: mrr_at_100
            value: 34.538999999999994
          - type: mrr_at_1000
            value: 34.626000000000005
          - type: mrr_at_3
            value: 31.374999999999996
          - type: mrr_at_5
            value: 32.535
          - type: ndcg_at_1
            value: 26.656999999999996
          - type: ndcg_at_10
            value: 30.675
          - type: ndcg_at_100
            value: 37.797
          - type: ndcg_at_1000
            value: 41.416
          - type: ndcg_at_3
            value: 26.827
          - type: ndcg_at_5
            value: 28.292
          - type: precision_at_1
            value: 26.656999999999996
          - type: precision_at_10
            value: 6.973999999999999
          - type: precision_at_100
            value: 1.286
          - type: precision_at_1000
            value: 0.174
          - type: precision_at_3
            value: 15.421000000000001
          - type: precision_at_5
            value: 11.133
          - type: recall_at_1
            value: 16.788
          - type: recall_at_10
            value: 38.746
          - type: recall_at_100
            value: 68.759
          - type: recall_at_1000
            value: 93.848
          - type: recall_at_3
            value: 26.807
          - type: recall_at_5
            value: 31.696999999999996
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
        metrics:
          - type: cos_sim_accuracy
            value: 61.14251352976549
          - type: cos_sim_ap
            value: 66.0067234682187
          - type: cos_sim_f1
            value: 68.08438532576463
          - type: cos_sim_precision
            value: 53.38825405261759
          - type: cos_sim_recall
            value: 93.9443535188216
          - type: dot_accuracy
            value: 61.14251352976549
          - type: dot_ap
            value: 65.99885462184204
          - type: dot_f1
            value: 68.08438532576463
          - type: dot_precision
            value: 53.38825405261759
          - type: dot_recall
            value: 93.9443535188216
          - type: euclidean_accuracy
            value: 61.14251352976549
          - type: euclidean_ap
            value: 66.0068124858108
          - type: euclidean_f1
            value: 68.08438532576463
          - type: euclidean_precision
            value: 53.38825405261759
          - type: euclidean_recall
            value: 93.9443535188216
          - type: manhattan_accuracy
            value: 61.10643415514131
          - type: manhattan_ap
            value: 66.00394480408306
          - type: manhattan_f1
            value: 68.1290759718811
          - type: manhattan_precision
            value: 53.41301460823373
          - type: manhattan_recall
            value: 94.03787701660042
          - type: max_accuracy
            value: 61.14251352976549
          - type: max_ap
            value: 66.0068124858108
          - type: max_f1
            value: 68.1290759718811
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: 1271c7809071a13532e05f25fb53511ffce77117
        metrics:
          - type: map_at_1
            value: 49.315
          - type: map_at_10
            value: 59.998
          - type: map_at_100
            value: 60.649
          - type: map_at_1000
            value: 60.668
          - type: map_at_3
            value: 57.727
          - type: map_at_5
            value: 59.019999999999996
          - type: mrr_at_1
            value: 49.419999999999995
          - type: mrr_at_10
            value: 60.036
          - type: mrr_at_100
            value: 60.678
          - type: mrr_at_1000
            value: 60.697
          - type: mrr_at_3
            value: 57.833
          - type: mrr_at_5
            value: 59.097
          - type: ndcg_at_1
            value: 49.419999999999995
          - type: ndcg_at_10
            value: 64.976
          - type: ndcg_at_100
            value: 68.068
          - type: ndcg_at_1000
            value: 68.587
          - type: ndcg_at_3
            value: 60.358000000000004
          - type: ndcg_at_5
            value: 62.668
          - type: precision_at_1
            value: 49.419999999999995
          - type: precision_at_10
            value: 8.124
          - type: precision_at_100
            value: 0.958
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 22.726
          - type: precision_at_5
            value: 14.795
          - type: recall_at_1
            value: 49.315
          - type: recall_at_10
            value: 80.453
          - type: recall_at_100
            value: 94.731
          - type: recall_at_1000
            value: 98.84100000000001
          - type: recall_at_3
            value: 67.861
          - type: recall_at_5
            value: 73.393
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
        metrics:
          - type: map_at_1
            value: 21.493000000000002
          - type: map_at_10
            value: 64.066
          - type: map_at_100
            value: 67.917
          - type: map_at_1000
            value: 68.02
          - type: map_at_3
            value: 43.847
          - type: map_at_5
            value: 55.18300000000001
          - type: mrr_at_1
            value: 76.5
          - type: mrr_at_10
            value: 84.057
          - type: mrr_at_100
            value: 84.19
          - type: mrr_at_1000
            value: 84.195
          - type: mrr_at_3
            value: 83.125
          - type: mrr_at_5
            value: 83.817
          - type: ndcg_at_1
            value: 76.5
          - type: ndcg_at_10
            value: 74.601
          - type: ndcg_at_100
            value: 80.072
          - type: ndcg_at_1000
            value: 81.047
          - type: ndcg_at_3
            value: 72.16799999999999
          - type: ndcg_at_5
            value: 71.479
          - type: precision_at_1
            value: 76.5
          - type: precision_at_10
            value: 36.385
          - type: precision_at_100
            value: 4.633
          - type: precision_at_1000
            value: 0.48700000000000004
          - type: precision_at_3
            value: 64.617
          - type: precision_at_5
            value: 54.89000000000001
          - type: recall_at_1
            value: 21.493000000000002
          - type: recall_at_10
            value: 77.387
          - type: recall_at_100
            value: 93.996
          - type: recall_at_1000
            value: 98.83
          - type: recall_at_3
            value: 47.563
          - type: recall_at_5
            value: 62.883
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
        metrics:
          - type: map_at_1
            value: 28.499999999999996
          - type: map_at_10
            value: 37.271
          - type: map_at_100
            value: 38.318000000000005
          - type: map_at_1000
            value: 38.362
          - type: map_at_3
            value: 34.2
          - type: map_at_5
            value: 35.97
          - type: mrr_at_1
            value: 28.499999999999996
          - type: mrr_at_10
            value: 37.271
          - type: mrr_at_100
            value: 38.318000000000005
          - type: mrr_at_1000
            value: 38.362
          - type: mrr_at_3
            value: 34.2
          - type: mrr_at_5
            value: 35.97
          - type: ndcg_at_1
            value: 28.499999999999996
          - type: ndcg_at_10
            value: 42.419000000000004
          - type: ndcg_at_100
            value: 47.591
          - type: ndcg_at_1000
            value: 48.791000000000004
          - type: ndcg_at_3
            value: 36.074
          - type: ndcg_at_5
            value: 39.275
          - type: precision_at_1
            value: 28.499999999999996
          - type: precision_at_10
            value: 5.8999999999999995
          - type: precision_at_100
            value: 0.8340000000000001
          - type: precision_at_1000
            value: 0.093
          - type: precision_at_3
            value: 13.833
          - type: precision_at_5
            value: 9.86
          - type: recall_at_1
            value: 28.499999999999996
          - type: recall_at_10
            value: 59
          - type: recall_at_100
            value: 83.39999999999999
          - type: recall_at_1000
            value: 92.9
          - type: recall_at_3
            value: 41.5
          - type: recall_at_5
            value: 49.3
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: 421605374b29664c5fc098418fe20ada9bd55f8a
        metrics:
          - type: accuracy
            value: 44.563293574451706
          - type: f1
            value: 30.778378421912002
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
        metrics:
          - type: accuracy
            value: 89.23076923076924
          - type: ap
            value: 61.032723799932974
          - type: f1
            value: 84.49441280498773
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
        metrics:
          - type: cos_sim_pearson
            value: 66.22719629640424
          - type: cos_sim_spearman
            value: 72.87558846789628
          - type: euclidean_pearson
            value: 71.17001015918034
          - type: euclidean_spearman
            value: 72.8755973307354
          - type: manhattan_pearson
            value: 71.27354402109685
          - type: manhattan_spearman
            value: 72.9741374432873
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
        metrics:
          - type: map
            value: 17.12412338289922
          - type: mrr
            value: 15.632936507936506
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
        metrics:
          - type: map_at_1
            value: 43.888
          - type: map_at_10
            value: 53.053
          - type: map_at_100
            value: 53.702000000000005
          - type: map_at_1000
            value: 53.739000000000004
          - type: map_at_3
            value: 50.613
          - type: map_at_5
            value: 52.035
          - type: mrr_at_1
            value: 45.587
          - type: mrr_at_10
            value: 53.921
          - type: mrr_at_100
            value: 54.51200000000001
          - type: mrr_at_1000
            value: 54.54599999999999
          - type: mrr_at_3
            value: 51.690999999999995
          - type: mrr_at_5
            value: 52.977
          - type: ndcg_at_1
            value: 45.587
          - type: ndcg_at_10
            value: 57.619
          - type: ndcg_at_100
            value: 60.76200000000001
          - type: ndcg_at_1000
            value: 61.797000000000004
          - type: ndcg_at_3
            value: 52.805
          - type: ndcg_at_5
            value: 55.239000000000004
          - type: precision_at_1
            value: 45.587
          - type: precision_at_10
            value: 7.564
          - type: precision_at_100
            value: 0.915
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 20.468
          - type: precision_at_5
            value: 13.572999999999999
          - type: recall_at_1
            value: 43.888
          - type: recall_at_10
            value: 71.06700000000001
          - type: recall_at_100
            value: 85.765
          - type: recall_at_1000
            value: 94.038
          - type: recall_at_3
            value: 58.069
          - type: recall_at_5
            value: 63.848000000000006
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.423671822461344
          - type: f1
            value: 56.82053357104769
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.69199731002018
          - type: f1
            value: 68.36036256101542
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
        metrics:
          - type: map_at_1
            value: 38
          - type: map_at_10
            value: 43.6
          - type: map_at_100
            value: 44.235
          - type: map_at_1000
            value: 44.299
          - type: map_at_3
            value: 42.016999999999996
          - type: map_at_5
            value: 42.862
          - type: mrr_at_1
            value: 38.1
          - type: mrr_at_10
            value: 43.65
          - type: mrr_at_100
            value: 44.284
          - type: mrr_at_1000
            value: 44.348
          - type: mrr_at_3
            value: 42.067
          - type: mrr_at_5
            value: 42.912
          - type: ndcg_at_1
            value: 38
          - type: ndcg_at_10
            value: 46.537
          - type: ndcg_at_100
            value: 49.936
          - type: ndcg_at_1000
            value: 51.925
          - type: ndcg_at_3
            value: 43.251
          - type: ndcg_at_5
            value: 44.753
          - type: precision_at_1
            value: 38
          - type: precision_at_10
            value: 5.59
          - type: precision_at_100
            value: 0.7250000000000001
          - type: precision_at_1000
            value: 0.089
          - type: precision_at_3
            value: 15.6
          - type: precision_at_5
            value: 10.08
          - type: recall_at_1
            value: 38
          - type: recall_at_10
            value: 55.900000000000006
          - type: recall_at_100
            value: 72.5
          - type: recall_at_1000
            value: 88.8
          - type: recall_at_3
            value: 46.800000000000004
          - type: recall_at_5
            value: 50.4
      - task:
          type: Retrieval
        dataset:
          type: Shitao/MLDR
          name: MTEB MultiLongDocRetrieval (zh)
          config: zh
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.75
          - type: map_at_10
            value: 10.508000000000001
          - type: map_at_100
            value: 10.988000000000001
          - type: map_at_1000
            value: 11.059
          - type: map_at_3
            value: 9.417
          - type: map_at_5
            value: 9.942
          - type: mrr_at_1
            value: 7.75
          - type: mrr_at_10
            value: 10.508000000000001
          - type: mrr_at_100
            value: 10.988000000000001
          - type: mrr_at_1000
            value: 11.06
          - type: mrr_at_3
            value: 9.417
          - type: mrr_at_5
            value: 9.942
          - type: ndcg_at_1
            value: 7.75
          - type: ndcg_at_10
            value: 12.315
          - type: ndcg_at_100
            value: 15.018999999999998
          - type: ndcg_at_1000
            value: 17.424999999999997
          - type: ndcg_at_3
            value: 9.982000000000001
          - type: ndcg_at_5
            value: 10.918
          - type: precision_at_1
            value: 7.75
          - type: precision_at_10
            value: 1.825
          - type: precision_at_100
            value: 0.317
          - type: precision_at_1000
            value: 0.052
          - type: precision_at_3
            value: 3.875
          - type: precision_at_5
            value: 2.775
          - type: recall_at_1
            value: 7.75
          - type: recall_at_10
            value: 18.25
          - type: recall_at_100
            value: 31.75
          - type: recall_at_1000
            value: 51.74999999999999
          - type: recall_at_3
            value: 11.625
          - type: recall_at_5
            value: 13.875000000000002
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
        metrics:
          - type: accuracy
            value: 78.42
          - type: f1
            value: 78.06136479834592
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: 66e76a618a34d6d565d5538088562851e6daa7ec
        metrics:
          - type: cos_sim_accuracy
            value: 59.61017866811045
          - type: cos_sim_ap
            value: 60.271467647520495
          - type: cos_sim_f1
            value: 69.19575113808801
          - type: cos_sim_precision
            value: 53.99644760213144
          - type: cos_sim_recall
            value: 96.30411826821542
          - type: dot_accuracy
            value: 59.61017866811045
          - type: dot_ap
            value: 60.271467647520495
          - type: dot_f1
            value: 69.19575113808801
          - type: dot_precision
            value: 53.99644760213144
          - type: dot_recall
            value: 96.30411826821542
          - type: euclidean_accuracy
            value: 59.61017866811045
          - type: euclidean_ap
            value: 60.271467647520495
          - type: euclidean_f1
            value: 69.19575113808801
          - type: euclidean_precision
            value: 53.99644760213144
          - type: euclidean_recall
            value: 96.30411826821542
          - type: manhattan_accuracy
            value: 59.7184623714131
          - type: manhattan_ap
            value: 60.32264902752218
          - type: manhattan_f1
            value: 69.22201138519924
          - type: manhattan_precision
            value: 54.02843601895735
          - type: manhattan_recall
            value: 96.30411826821542
          - type: max_accuracy
            value: 59.7184623714131
          - type: max_ap
            value: 60.32264902752218
          - type: max_f1
            value: 69.22201138519924
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: e610f2ebd179a8fda30ae534c3878750a96db120
        metrics:
          - type: accuracy
            value: 93.05000000000001
          - type: ap
            value: 91.18195895507802
          - type: f1
            value: 93.04021920382944
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
        metrics:
          - type: cos_sim_pearson
            value: 15.646669268679258
          - type: cos_sim_spearman
            value: 18.210627988600088
          - type: euclidean_pearson
            value: 18.545700775834135
          - type: euclidean_spearman
            value: 18.22638450822432
          - type: manhattan_pearson
            value: 18.56718129015248
          - type: manhattan_spearman
            value: 18.27028021184377
      - task:
          type: PairClassification
        dataset:
          type: paws-x
          name: MTEB PawsX (zh)
          config: zh
          split: test
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
        metrics:
          - type: cos_sim_accuracy
            value: 59.599999999999994
          - type: cos_sim_ap
            value: 57.39257507549949
          - type: cos_sim_f1
            value: 62.32136632973162
          - type: cos_sim_precision
            value: 45.265822784810126
          - type: cos_sim_recall
            value: 100
          - type: dot_accuracy
            value: 59.599999999999994
          - type: dot_ap
            value: 56.98345226457827
          - type: dot_f1
            value: 62.32136632973162
          - type: dot_precision
            value: 45.265822784810126
          - type: dot_recall
            value: 100
          - type: euclidean_accuracy
            value: 59.599999999999994
          - type: euclidean_ap
            value: 57.3922995193463
          - type: euclidean_f1
            value: 62.32136632973162
          - type: euclidean_precision
            value: 45.265822784810126
          - type: euclidean_recall
            value: 100
          - type: manhattan_accuracy
            value: 59.550000000000004
          - type: manhattan_ap
            value: 57.409507119268376
          - type: manhattan_f1
            value: 62.32136632973162
          - type: manhattan_precision
            value: 45.265822784810126
          - type: manhattan_recall
            value: 100
          - type: max_accuracy
            value: 59.599999999999994
          - type: max_ap
            value: 57.409507119268376
          - type: max_f1
            value: 62.32136632973162
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
        metrics:
          - type: cos_sim_pearson
            value: 26.20813788138459
          - type: cos_sim_spearman
            value: 27.161390755734427
          - type: euclidean_pearson
            value: 25.38239308132396
          - type: euclidean_spearman
            value: 27.161458517606906
          - type: manhattan_pearson
            value: 25.533861242377704
          - type: manhattan_spearman
            value: 27.356882292991834
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 63.437181390975624
          - type: cos_sim_spearman
            value: 66.42410464140018
          - type: euclidean_pearson
            value: 65.23091221659769
          - type: euclidean_spearman
            value: 66.42410464140018
          - type: manhattan_pearson
            value: 65.42430798528258
          - type: manhattan_spearman
            value: 66.44811980407968
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
        metrics:
          - type: cos_sim_pearson
            value: 67.13526185743584
          - type: cos_sim_spearman
            value: 67.87262977922003
          - type: euclidean_pearson
            value: 68.01501802788067
          - type: euclidean_spearman
            value: 67.87241377586508
          - type: manhattan_pearson
            value: 68.03194534033594
          - type: manhattan_spearman
            value: 67.91448799292998
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: 76631901a18387f85eaa53e5450019b87ad58ef9
        metrics:
          - type: map
            value: 64.41164023353707
          - type: mrr
            value: 74.15855283661647
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
        metrics:
          - type: map_at_1
            value: 20.456
          - type: map_at_10
            value: 57.611999999999995
          - type: map_at_100
            value: 62.104000000000006
          - type: map_at_1000
            value: 62.251999999999995
          - type: map_at_3
            value: 39.806999999999995
          - type: map_at_5
            value: 49.016999999999996
          - type: mrr_at_1
            value: 73.685
          - type: mrr_at_10
            value: 79.361
          - type: mrr_at_100
            value: 79.63799999999999
          - type: mrr_at_1000
            value: 79.649
          - type: mrr_at_3
            value: 78.144
          - type: mrr_at_5
            value: 78.89699999999999
          - type: ndcg_at_1
            value: 73.685
          - type: ndcg_at_10
            value: 67.824
          - type: ndcg_at_100
            value: 74.399
          - type: ndcg_at_1000
            value: 75.949
          - type: ndcg_at_3
            value: 68.643
          - type: ndcg_at_5
            value: 67.108
          - type: precision_at_1
            value: 73.685
          - type: precision_at_10
            value: 34.904
          - type: precision_at_100
            value: 4.714
          - type: precision_at_1000
            value: 0.508
          - type: precision_at_3
            value: 60.587
          - type: precision_at_5
            value: 50.892
          - type: recall_at_1
            value: 20.456
          - type: recall_at_10
            value: 68.314
          - type: recall_at_100
            value: 88.67399999999999
          - type: recall_at_1000
            value: 96.48400000000001
          - type: recall_at_3
            value: 42.498999999999995
          - type: recall_at_5
            value: 54.492
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
        metrics:
          - type: accuracy
            value: 50.258
          - type: f1
            value: 48.46817969810712
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: 5798586b105c0434e4f0fe5e767abe619442cf93
        metrics:
          - type: v_measure
            value: 59.39920752654844
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
        metrics:
          - type: v_measure
            value: 55.52800428947542
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
        metrics:
          - type: map_at_1
            value: 25.4
          - type: map_at_10
            value: 33.43
          - type: map_at_100
            value: 34.259
          - type: map_at_1000
            value: 34.329
          - type: map_at_3
            value: 30.817
          - type: map_at_5
            value: 32.422000000000004
          - type: mrr_at_1
            value: 25.3
          - type: mrr_at_10
            value: 33.379999999999995
          - type: mrr_at_100
            value: 34.209
          - type: mrr_at_1000
            value: 34.278999999999996
          - type: mrr_at_3
            value: 30.767
          - type: mrr_at_5
            value: 32.372
          - type: ndcg_at_1
            value: 25.4
          - type: ndcg_at_10
            value: 37.797
          - type: ndcg_at_100
            value: 42.168
          - type: ndcg_at_1000
            value: 44.194
          - type: ndcg_at_3
            value: 32.537
          - type: ndcg_at_5
            value: 35.403
          - type: precision_at_1
            value: 25.4
          - type: precision_at_10
            value: 5.17
          - type: precision_at_100
            value: 0.73
          - type: precision_at_1000
            value: 0.089
          - type: precision_at_3
            value: 12.5
          - type: precision_at_5
            value: 8.88
          - type: recall_at_1
            value: 25.4
          - type: recall_at_10
            value: 51.7
          - type: recall_at_100
            value: 73
          - type: recall_at_1000
            value: 89.3
          - type: recall_at_3
            value: 37.5
          - type: recall_at_5
            value: 44.4
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: 339287def212450dcaa9df8c22bf93e9980c7023
        metrics:
          - type: accuracy
            value: 89.17000000000002
          - type: ap
            value: 74.83484198968617
          - type: f1
            value: 87.84607916808504