|
--- |
|
base_model: NousResearch/Nous-Hermes-2-SOLAR-10.7B |
|
inference: false |
|
model_type: llama |
|
prompt_template: | |
|
### User:\n |
|
{prompt} |
|
### Assistant:\n |
|
quantized_by: mwitiderrick |
|
tags: |
|
- deepsparse |
|
--- |
|
# Nous Hermes 2 - Solar 10.7B - DeepSparse |
|
This repo contains model files for [Nous Hermes 2 - Solar 10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. |
|
|
|
This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). |
|
|
|
## Inference |
|
Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: |
|
```bash |
|
pip install deepsparse-nightly[llm] |
|
``` |
|
Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): |
|
```python |
|
from deepsparse import TextGeneration |
|
|
|
prompt = "How to make banana bread?" |
|
formatted_prompt = f"### User:\n{prompt}\n\n### Assistant:\n" |
|
|
|
model = TextGeneration(model_path="hf:neuralmagic/Nous-Hermes-2-SOLAR-10.7B-pruned50-quant-ds") |
|
|
|
print(model(formatted_prompt, max_new_tokens=200).generations[0].text) |
|
""" |
|
To make banana bread, you will need the following ingredients: |
|
|
|
- 3 ripe bananas |
|
- 1 cup of milk |
|
- 1 cup of sugar |
|
- 1/2 cup of butter |
|
- 2 eggs |
|
- 1 teaspoon of baking powder |
|
- 1 teaspoon of salt |
|
- 2 cups of flour |
|
|
|
Here's a simple recipe to make banana bread: |
|
|
|
1. Preheat your oven to 350°F (175°C). |
|
|
|
2. In a large bowl, mash the ripe bananas. |
|
|
|
3. Add the milk, sugar, butter, eggs, baking powder, salt, and flour to the mashed bananas. Mix everything together until you have a smooth batter. |
|
|
|
4. Pour the batter into a greased loaf pan. |
|
|
|
5. Bake the banana bread for about 60 minutes or until a tooth |
|
""" |
|
``` |
|
|
|
## Prompt template |
|
``` |
|
|
|
### User:\n |
|
{prompt} |
|
### Assistant:\n |
|
``` |
|
## Sparsification |
|
For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. |
|
|
|
```bash |
|
git clone https://github.com/neuralmagic/sparseml |
|
pip install -e "sparseml[transformers]" |
|
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py NousResearch/Nous-Hermes-2-SOLAR-10.7B open_platypus --recipe recipe.yaml --save True |
|
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment |
|
cp deployment/model.onnx deployment/model-orig.onnx |
|
``` |
|
Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: |
|
```python |
|
import os |
|
import onnx |
|
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector |
|
input_file = "deployment/model-orig.onnx" |
|
output_file = "deployment/model.onnx" |
|
model = onnx.load(input_file, load_external_data=False) |
|
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) |
|
onnx.save(model, output_file) |
|
print(f"Modified model saved to: {output_file}") |
|
``` |
|
Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. |
|
## Slack |
|
|
|
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ) |