granite-3.1-8b-instruct-quantized.w8a8

Model Overview

  • Model Architecture: granite-3.1-8b-instruct
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: INT8
    • Activation quantization: INT8
  • Release Date: 1/8/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of ibm-granite/granite-3.1-8b-instruct. It achieves an average score of 70.26 on the OpenLLM benchmark (version 1), whereas the unquantized model achieves 70.30.

Model Optimizations

This model was obtained by quantizing the weights and activations of ibm-granite/granite-3.1-8b-instruct to INT8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-8b-instruct-quantized.w8a8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below.

Model Creation Code
python quantize.py --model_path ibm-granite/granite-3.1-8b-instruct --quant_path "output_dir/granite-3.1-8b-instruct-quantized.w8a8" --calib_size 3072 --dampening_frac 0.1 --observer mse
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot, apply
import argparse
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy


parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--quant_path', type=str)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.1) 
parser.add_argument('--observer', type=str, default="minmax")
args = parser.parse_args()

model = AutoModelForCausalLM.from_pretrained(
    args.model_path,
    device_map="auto",
    torch_dtype="auto",
    use_cache=False,
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)

NUM_CALIBRATION_SAMPLES = args.calib_size
DATASET_ID = "neuralmagic/LLM_compression_calibration"
DATASET_SPLIT = "train"
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

def preprocess(example):
    concat_txt = example["instruction"] + "\n" + example["output"]
    return {"text": concat_txt}

ds = ds.map(preprocess)

def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        truncation=False,
        add_special_tokens=True,
    )


ds = ds.map(tokenize, remove_columns=ds.column_names)

ignore=["lm_head"]
mappings=[
    [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
    [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
    [["re:.*down_proj"], "re:.*up_proj"]
]

recipe = [
    SmoothQuantModifier(smoothing_strength=0.8, ignore=ignore, mappings=mappings),
    GPTQModifier(
        targets=["Linear"],
        ignore=["lm_head"],
        scheme="W8A8",
        dampening_frac=args.dampening_frac,
        observer=args.observer,
    )
]
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    num_calibration_samples=args.calib_size,
    max_seq_length=8196,
)

# Save to disk compressed.
model.save_pretrained(quant_path, save_compressed=True)
tokenizer.save_pretrained(quant_path)

Evaluation

The model was evaluated on OpenLLM Leaderboard V1, OpenLLM Leaderboard V2 and on HumanEval, using the following commands:

Evaluation Commands

OpenLLM Leaderboard V1:

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/granite-3.1-8b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config

OpenLLM Leaderboard V2:

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/granite-3.1-8b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks leaderboard \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config

HumanEval

Generation
python3 codegen/generate.py \
  --model neuralmagic/granite-3.1-8b-instruct-quantized.w8a8 \
  --bs 16 \
  --temperature 0.2 \
  --n_samples 50 \
  --root "." \
  --dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
  humaneval/neuralmagic--granite-3.1-8b-instruct-quantized.w8a8_vllm_temp_0.2
Evaluation
evalplus.evaluate \
  --dataset humaneval \
  --samples humaneval/neuralmagic--granite-3.1-8b-instruct-quantized.w8a8_vllm_temp_0.2-sanitized

Accuracy

Category Metric ibm-granite/granite-3.1-8b-instruct neuralmagic/granite-3.1-8b-instruct-quantized.w8a8 Recovery (%)
OpenLLM V1 ARC-Challenge (Acc-Norm, 25-shot) 66.81 67.06 100.37
GSM8K (Strict-Match, 5-shot) 64.52 65.66 101.77
HellaSwag (Acc-Norm, 10-shot) 84.18 83.93 99.70
MMLU (Acc, 5-shot) 65.52 65.03 99.25
TruthfulQA (MC2, 0-shot) 60.57 60.02 99.09
Winogrande (Acc, 5-shot) 80.19 79.87 99.60
Average Score 70.30 70.26 99.95
OpenLLM V2 IFEval (Inst Level Strict Acc, 0-shot) 74.01 73.50 99.31
BBH (Acc-Norm, 3-shot) 53.19 52.59 98.87
Math-Hard (Exact-Match, 4-shot) 14.77 15.73 106.50
GPQA (Acc-Norm, 0-shot) 31.76 30.62 96.40
MUSR (Acc-Norm, 0-shot) 46.01 44.30 96.28
MMLU-Pro (Acc, 5-shot) 35.81 35.41 98.88
Average Score 42.61 42.03 98.64
Coding HumanEval Pass@1 71.00 70.50 99.30

Inference Performance

This model achieves up to 1.6x speedup in single-stream deployment and up to 1.7x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.6.6.post1, and GuideLLM.

Benchmarking Command
guidellm --model neuralmagic/granite-3.1-8b-instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server

Single-stream performance (measured with vLLM version 0.6.6.post1)

Latency (s)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
A5000 granite-3.1-8b-instruct 28.3 3.7 28.8 3.8 3.6 7.2 15.7
granite-3.1-8b-instruct-quantized.w8a8
(this model)
1.60 17.7 2.3 18.0 2.4 2.2 4.5 10.0
granite-3.1-8b-instruct-quantized.w4a16 2.61 10.3 1.5 10.7 1.5 1.3 2.7 6.6
A6000 granite-3.1-8b-instruct 25.8 3.4 26.2 3.4 3.3 6.5 14.2
granite-3.1-8b-instruct-quantized.w8a8
(this model)
1.50 17.4 2.3 16.9 2.2 2.2 4.4 9.8
granite-3.1-8b-instruct-quantized.w4a16 2.48 10.0 1.4 10.4 1.5 1.3 2.5 6.2
A100 granite-3.1-8b-instruct 13.6 1.8 13.7 1.8 1.7 3.4 7.3
granite-3.1-8b-instruct-quantized.w8a8
(this model)
1.31 10.4 1.3 10.5 1.4 1.3 2.6 5.6
granite-3.1-8b-instruct-quantized.w4a16 1.80 7.3 1.0 7.4 1.0 0.9 1.9 4.3

Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)

Maximum Throughput (Queries per Second)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
A5000 granite-3.1-8b-instruct 0.8 3.1 0.4 2.5 6.7 2.7 0.3
granite-3.1-8b-instruct-quantized.w8a8
(this model)
1.71 1.3 5.2 0.9 4.0 10.5 4.4 0.5
granite-3.1-8b-instruct-quantized.w4a16 1.46 1.3 3.9 0.8 2.9 8.2 3.6 0.5
A6000 granite-3.1-8b-instruct 1.3 5.1 0.9 4.0 0.3 4.3 0.6
granite-3.1-8b-instruct-quantized.w8a8
(this model)
1.39 1.8 7.0 1.3 5.6 14.0 6.3 0.8
granite-3.1-8b-instruct-quantized.w4a16 1.09 1.9 4.8 1.0 3.8 10.0 5.0 0.6
A100 granite-3.1-8b-instruct 3.1 10.7 2.1 8.5 20.6 9.6 1.4
granite-3.1-8b-instruct-quantized.w8a8
(this model)
1.23 3.8 14.2 2.1 11.4 25.9 12.1 1.7
granite-3.1-8b-instruct-quantized.w4a16 0.96 3.4 9.0 2.6 7.2 18.0 8.8 1.3
Downloads last month
127
Safetensors
Model size
8.37B params
Tensor type
BF16
·
I8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for neuralmagic/granite-3.1-8b-instruct-quantized.w8a8

Quantized
(23)
this model

Collection including neuralmagic/granite-3.1-8b-instruct-quantized.w8a8