metadata
tags:
- bert
- oBERT
- sparsity
- pruning
- compression
language: en
datasets: mnli
oBERT-12-downstream-pruned-unstructured-97-mnli
This model is obtained with The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models.
It corresponds to the model presented in the Table 1 - 30 Epochs - oBERT - MNLI 97%
.
Pruning method: oBERT downstream unstructured
Paper: https://arxiv.org/abs/2203.07259
Dataset: MNLI
Sparsity: 97%
Number of layers: 12
The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with (*)
):
| oBERT 97% | m-acc | mm-acc|
| ------------ | ----- | ----- |
| seed=42 (*)| 82.10 | 81.94 |
| seed=3407 | 81.81 | 82.27 |
| seed=54321 | 81.40 | 81.83 |
| ------------ | ----- | ----- |
| mean | 81.77 | 82.01 |
| stdev | 0.351 | 0.228 |
Code: coming soon
BibTeX entry and citation info
@article{kurtic2022optimal,
title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models},
author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan},
journal={arXiv preprint arXiv:2203.07259},
year={2022}
}