BERTimbau Large (aka "bert-large-portuguese-cased")
Introduction
BERTimbau Large is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large.
For further information or requests, please go to BERTimbau repository.
Available models
Model | Arch. | #Layers | #Params |
---|---|---|---|
neuralmind/bert-base-portuguese-cased |
BERT-Base | 12 | 110M |
neuralmind/bert-large-portuguese-cased |
BERT-Large | 24 | 335M |
Usage
from transformers import AutoTokenizer # Or BertTokenizer
from transformers import AutoModelForPreTraining # Or BertForPreTraining for loading pretraining heads
from transformers import AutoModel # or BertModel, for BERT without pretraining heads
model = AutoModelForPreTraining.from_pretrained('neuralmind/bert-large-portuguese-cased')
tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-large-portuguese-cased', do_lower_case=False)
Masked language modeling prediction example
from transformers import pipeline
pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
pipe('Tinha uma [MASK] no meio do caminho.')
# [{'score': 0.5054386258125305,
# 'sequence': '[CLS] Tinha uma pedra no meio do caminho. [SEP]',
# 'token': 5028,
# 'token_str': 'pedra'},
# {'score': 0.05616172030568123,
# 'sequence': '[CLS] Tinha uma curva no meio do caminho. [SEP]',
# 'token': 9562,
# 'token_str': 'curva'},
# {'score': 0.02348282001912594,
# 'sequence': '[CLS] Tinha uma parada no meio do caminho. [SEP]',
# 'token': 6655,
# 'token_str': 'parada'},
# {'score': 0.01795753836631775,
# 'sequence': '[CLS] Tinha uma mulher no meio do caminho. [SEP]',
# 'token': 2606,
# 'token_str': 'mulher'},
# {'score': 0.015246033668518066,
# 'sequence': '[CLS] Tinha uma luz no meio do caminho. [SEP]',
# 'token': 3377,
# 'token_str': 'luz'}]
For BERT embeddings
import torch
model = AutoModel.from_pretrained('neuralmind/bert-large-portuguese-cased')
input_ids = tokenizer.encode('Tinha uma pedra no meio do caminho.', return_tensors='pt')
with torch.no_grad():
outs = model(input_ids)
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
# encoded.shape: (8, 1024)
# tensor([[ 1.1872, 0.5606, -0.2264, ..., 0.0117, -0.1618, -0.2286],
# [ 1.3562, 0.1026, 0.1732, ..., -0.3855, -0.0832, -0.1052],
# [ 0.2988, 0.2528, 0.4431, ..., 0.2684, -0.5584, 0.6524],
# ...,
# [ 0.3405, -0.0140, -0.0748, ..., 0.6649, -0.8983, 0.5802],
# [ 0.1011, 0.8782, 0.1545, ..., -0.1768, -0.8880, -0.1095],
# [ 0.7912, 0.9637, -0.3859, ..., 0.2050, -0.1350, 0.0432]])
Citation
If you use our work, please cite:
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
- Downloads last month
- 266,921