vulnfixClassification-StarEncoder-DCMB

This model is a fine-tuned version of neuralsentry/starencoder-git-commits-mlm on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1797
  • Accuracy: 0.9770
  • Precision: 0.9841
  • Recall: 0.9714
  • F1: 0.9777
  • Roc Auc: 0.9772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 420
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
0.2106 1.0 219 0.1196 0.9640 0.9654 0.9654 0.9654 0.9639
0.086 2.0 438 0.0883 0.9736 0.9859 0.9629 0.9743 0.9740
0.0477 3.0 657 0.0944 0.9729 0.9776 0.9700 0.9738 0.9730
0.0269 4.0 876 0.1215 0.9723 0.9705 0.9764 0.9734 0.9721
0.0146 5.0 1095 0.1299 0.9743 0.9854 0.9648 0.9750 0.9747
0.0069 6.0 1314 0.1504 0.9750 0.9814 0.9703 0.9758 0.9752
0.0044 7.0 1533 0.1653 0.9743 0.9779 0.9725 0.9752 0.9744
0.0019 8.0 1752 0.1804 0.9756 0.9817 0.9711 0.9764 0.9758
0.0008 9.0 1971 0.1827 0.9767 0.9839 0.9711 0.9775 0.9769
0.0008 10.0 2190 0.1797 0.9770 0.9841 0.9714 0.9777 0.9772

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for neuralsentry/vulnfixClassification-StarEncoder-DCMB

Finetuned
(2)
this model