Neuria_BERT_Graficos_2025_02_05

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3226
  • Accuracy: 0.9634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1144 1.0 29 0.5802 0.6707
0.527 2.0 58 0.6142 0.7561
0.2708 3.0 87 0.4024 0.8780
0.0954 4.0 116 0.4247 0.9024
0.0864 5.0 145 0.3698 0.9024
0.0146 6.0 174 0.4584 0.9146
0.0213 7.0 203 0.4625 0.9268
0.0267 8.0 232 0.3833 0.9268
0.0009 9.0 261 0.2960 0.9512
0.0007 10.0 290 0.2934 0.9512
0.0005 11.0 319 0.2940 0.9634
0.0005 12.0 348 0.3021 0.9634
0.0004 13.0 377 0.3062 0.9634
0.0004 14.0 406 0.3084 0.9634
0.0004 15.0 435 0.3158 0.9634
0.0003 16.0 464 0.3173 0.9634
0.0003 17.0 493 0.3146 0.9634
0.0003 18.0 522 0.3169 0.9634
0.0003 19.0 551 0.3215 0.9634
0.0002 20.0 580 0.3226 0.9634

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.4.1
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
46
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for neuria99/Neuria_BERT_Graficos_2025_02_05

Finetuned
(95)
this model