File size: 2,767 Bytes
6336f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189b49d
 
6336f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189b49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6336f4a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---

library_name: transformers
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Neuria_BERT_Graficos_2025_02_05
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Neuria_BERT_Graficos_2025_02_05



This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.

It achieves the following results on the evaluation set:

- Loss: 0.3226

- Accuracy: 0.9634



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1144        | 1.0   | 29   | 0.5802          | 0.6707   |
| 0.527         | 2.0   | 58   | 0.6142          | 0.7561   |
| 0.2708        | 3.0   | 87   | 0.4024          | 0.8780   |
| 0.0954        | 4.0   | 116  | 0.4247          | 0.9024   |
| 0.0864        | 5.0   | 145  | 0.3698          | 0.9024   |
| 0.0146        | 6.0   | 174  | 0.4584          | 0.9146   |
| 0.0213        | 7.0   | 203  | 0.4625          | 0.9268   |
| 0.0267        | 8.0   | 232  | 0.3833          | 0.9268   |
| 0.0009        | 9.0   | 261  | 0.2960          | 0.9512   |
| 0.0007        | 10.0  | 290  | 0.2934          | 0.9512   |
| 0.0005        | 11.0  | 319  | 0.2940          | 0.9634   |
| 0.0005        | 12.0  | 348  | 0.3021          | 0.9634   |
| 0.0004        | 13.0  | 377  | 0.3062          | 0.9634   |
| 0.0004        | 14.0  | 406  | 0.3084          | 0.9634   |
| 0.0004        | 15.0  | 435  | 0.3158          | 0.9634   |
| 0.0003        | 16.0  | 464  | 0.3173          | 0.9634   |
| 0.0003        | 17.0  | 493  | 0.3146          | 0.9634   |
| 0.0003        | 18.0  | 522  | 0.3169          | 0.9634   |
| 0.0003        | 19.0  | 551  | 0.3215          | 0.9634   |
| 0.0002        | 20.0  | 580  | 0.3226          | 0.9634   |


### Framework versions

- Transformers 4.44.1
- Pytorch 2.4.1
- Datasets 2.19.1
- Tokenizers 0.19.1