metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
- generated_from_keras_callback
model-index:
- name: nguyennghia0902/electra-small-discriminator_0.0001_16_15e
results: []
nguyennghia0902/electra-small-discriminator_0.0001_16_15e
This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.4315
- Train End Logits Accuracy: 0.8714
- Train Start Logits Accuracy: 0.8580
- Validation Loss: 0.1470
- Validation End Logits Accuracy: 0.9577
- Validation Start Logits Accuracy: 0.9542
- Epoch: 14
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 46905, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
2.9418 | 0.3441 | 0.3115 | 2.1831 | 0.4777 | 0.4649 | 0 |
2.2767 | 0.4696 | 0.4357 | 1.7802 | 0.5643 | 0.5481 | 1 |
1.9907 | 0.5234 | 0.4941 | 1.5055 | 0.6229 | 0.6068 | 2 |
1.7630 | 0.5690 | 0.5440 | 1.2348 | 0.6824 | 0.6708 | 3 |
1.5637 | 0.6086 | 0.5842 | 1.0345 | 0.7291 | 0.7190 | 4 |
1.3785 | 0.6500 | 0.6241 | 0.8309 | 0.7823 | 0.7724 | 5 |
1.2118 | 0.6880 | 0.6604 | 0.6918 | 0.8105 | 0.8116 | 6 |
1.0610 | 0.7222 | 0.6963 | 0.5471 | 0.8490 | 0.8476 | 7 |
0.9249 | 0.7495 | 0.7272 | 0.4426 | 0.8770 | 0.8763 | 8 |
0.8085 | 0.7777 | 0.7585 | 0.3695 | 0.8919 | 0.8908 | 9 |
0.7062 | 0.8018 | 0.7843 | 0.2773 | 0.9194 | 0.9198 | 10 |
0.6182 | 0.8232 | 0.8043 | 0.2323 | 0.9343 | 0.9302 | 11 |
0.5422 | 0.8414 | 0.8267 | 0.1807 | 0.9470 | 0.9470 | 12 |
0.4797 | 0.8588 | 0.8443 | 0.1570 | 0.9530 | 0.9515 | 13 |
0.4315 | 0.8714 | 0.8580 | 0.1470 | 0.9577 | 0.9542 | 14 |
Framework versions
- Transformers 4.39.3
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2