distilhubert-finetuned-gtzan-2.5E-5rate

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5939
  • Accuracy: 0.82

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2487 1.0 113 2.1744 0.41
1.7534 2.0 226 1.6280 0.65
1.4458 3.0 339 1.2993 0.7
1.2271 4.0 452 1.1119 0.72
1.115 5.0 565 1.0119 0.75
0.834 6.0 678 0.8967 0.77
1.0247 7.0 791 0.8154 0.78
0.6211 8.0 904 0.7035 0.81
0.7136 9.0 1017 0.6755 0.8
0.464 10.0 1130 0.6808 0.84
0.2952 11.0 1243 0.6245 0.8
0.3117 12.0 1356 0.6150 0.84
0.24 13.0 1469 0.6000 0.82
0.2554 14.0 1582 0.5952 0.83
0.2452 15.0 1695 0.5939 0.82

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nic70/distilhubert-finetuned-gtzan-rev1

Finetuned
(423)
this model

Dataset used to train nic70/distilhubert-finetuned-gtzan-rev1

Evaluation results