whisper-medium-3-F / README.md
nicolarsen's picture
Training in progress, step 1000
18e295b verified
|
raw
history blame
2.08 kB
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - common_voice_15_0
metrics:
  - wer
model-index:
  - name: Whisper da-nst
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_15_0
          type: common_voice_15_0
          config: da
          split: test
          args: da
        metrics:
          - name: Wer
            type: wer
            value: 28.276087362329662

Whisper da-nst

This model is a fine-tuned version of openai/whisper-medium on the common_voice_15_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7829
  • Wer: 28.2761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0046 4.03 1000 0.7389 31.9209
0.003 9.02 2000 0.7225 29.6108
0.0001 14.01 3000 0.7554 28.3788
0.0 18.04 4000 0.7761 28.3508
0.0 23.03 5000 0.7829 28.2761

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1