Nicolay Rusnachenko's picture

Nicolay Rusnachenko

nicolay-r

AI & ML interests

Information Retrieval・Medical Multimodal NLP (πŸ–Ό+πŸ“) Research Fellow @BU_Research・software developer http://arekit.io・PhD in NLP

Recent Activity

reacted to singhsidhukuldeep's post with 🧠 about 12 hours ago
Exciting News in AI: JinaAI Releases JINA-CLIP-v2! The team at Jina AI has just released a groundbreaking multilingual multimodal embedding model that's pushing the boundaries of text-image understanding. Here's why this is a big deal: πŸš€ Technical Highlights: - Dual encoder architecture combining a 561M parameter Jina XLM-RoBERTa text encoder and a 304M parameter EVA02-L14 vision encoder - Supports 89 languages with 8,192 token context length - Processes images up to 512Γ—512 pixels with 14Γ—14 patch size - Implements FlashAttention2 for text and xFormers for vision processing - Uses Matryoshka Representation Learning for efficient vector storage ⚑️ Under The Hood: - Multi-stage training process with progressive resolution scaling (224β†’384β†’512) - Contrastive learning using InfoNCE loss in both directions - Trained on massive multilingual dataset including 400M English and 400M multilingual image-caption pairs - Incorporates specialized datasets for document understanding, scientific graphs, and infographics - Uses hard negative mining with 7 negatives per positive sample πŸ“Š Performance: - Outperforms previous models on visual document retrieval (52.65% nDCG@5) - Achieves 89.73% image-to-text and 79.09% text-to-image retrieval on CLIP benchmark - Strong multilingual performance across 30 languages - Maintains performance even with 75% dimension reduction (256D vs 1024D) 🎯 Key Innovation: The model solves the long-standing challenge of unifying text-only and multi-modal retrieval systems while adding robust multilingual support. Perfect for building cross-lingual visual search systems! Kudos to the research team at Jina AI for this impressive advancement in multimodal AI!
View all activity

Organizations

None yet