|
--- |
|
license: gpl-3.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: nisten/shqiponja-15b-v1 |
|
model-index: |
|
- name: shqiponja-15 |
|
results: [] |
|
datasets: |
|
- iamshnoo/alpaca-cleaned-albanian |
|
- noxneural/lilium_albanicum_eng_alb |
|
--- |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/V0mt5q-kb0yFeeGFNGv0q.png) |
|
|
|
|
|
**15.6b 2expert MoE** |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: nisten/shqiponja15 |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
trust_remote_code: true |
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: iamshnoo/alpaca-cleaned-albanian |
|
type: alpaca |
|
shards: 10 |
|
- path: noxneural/lilium_albanicum_eng_alb |
|
shards: 20 |
|
type: |
|
field_system: system |
|
field_instruction: question |
|
field_output: response |
|
format: "[INST] {instruction} [/INST]" |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.0 |
|
output_dir: ./alora-out |
|
|
|
# - model.layers.2[7-9]+.block_sparse_moe.experts.* |
|
# - model.layers.3[0-9]+.block_sparse_moe.experts.* |
|
# - model.layers.2[7-9]+.b |
|
</details><br> |
|
``` |
|
# alora-out |
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 80 |
|
- total_eval_batch_size: 40 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |