Upload README.md
#30
by
AlexZheng
- opened
README.md
CHANGED
@@ -4,14 +4,11 @@ tags:
|
|
4 |
- stable-diffusion
|
5 |
- text-to-image
|
6 |
---
|
7 |
-
#
|
8 |
-
This is the fine-tuned Stable Diffusion model trained on images from the
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
[![Become A Patreon](https://badgen.net/badge/become/a%20patron/F96854)](https://patreon.com/user?u=79196446)
|
13 |
-
|
14 |
-
### 🧨 Diffusers
|
15 |
|
16 |
This model can be used just like any other Stable Diffusion model. For more information,
|
17 |
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
|
@@ -23,35 +20,51 @@ You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/op
|
|
23 |
from diffusers import StableDiffusionPipeline
|
24 |
import torch
|
25 |
|
26 |
-
model_id = "
|
27 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
28 |
pipe = pipe.to("cuda")
|
29 |
|
30 |
-
prompt = "
|
31 |
image = pipe(prompt).images[0]
|
32 |
|
33 |
-
image.save("./
|
34 |
```
|
35 |
|
36 |
-
# Gradio & Colab
|
37 |
|
38 |
-
We also support a [Gradio](https://github.com/gradio-app/gradio) Web UI and Colab with Diffusers to run fine-tuned Stable Diffusion models:
|
39 |
-
[![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/anzorq/finetuned_diffusion)
|
40 |
-
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1j5YvfMZoGdDGdj3O3xRU1m4ujKYsElZO?usp=sharing)
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
![output Samples v3](https://huggingface.co/nitrosocke/Arcane-Diffusion/resolve/main/arcane-v3-samples-01.jpg)
|
46 |
-
![output Samples v3](https://huggingface.co/nitrosocke/Arcane-Diffusion/resolve/main/arcane-v3-samples-02.jpg)
|
47 |
-
### Sample images from the model:
|
48 |
-
![output Samples](https://huggingface.co/nitrosocke/Arcane-Diffusion/resolve/main/arcane-diffusion-output-images.jpg)
|
49 |
-
### Sample images used for training:
|
50 |
-
![Training Samples](https://huggingface.co/nitrosocke/Arcane-Diffusion/resolve/main/arcane-diffusion-training-images.jpg)
|
51 |
|
52 |
-
**Version 3** (arcane-diffusion-v3): This version uses the new _train-text-encoder_ setting and improves the quality and edibility of the model immensely. Trained on 95 images from the show in 8000 steps.
|
53 |
|
54 |
-
**Version 2** (arcane-diffusion-v2): This uses the diffusers based dreambooth training and prior-preservation loss is way more effective. The diffusers where then converted with a script to a ckpt file in order to work with automatics repo.
|
55 |
-
Training was done with 5k steps for a direct comparison to v1 and results show that it needs more steps for a more prominent result. Version 3 will be tested with 11k steps.
|
56 |
|
57 |
-
**Version 1** (arcane-diffusion-5k): This model was trained using _Unfrozen Model Textual Inversion_ utilizing the _Training with prior-preservation loss_ methods. There is still a slight shift towards the style, while not using the arcane token.
|
|
|
4 |
- stable-diffusion
|
5 |
- text-to-image
|
6 |
---
|
7 |
+
# Galactic Diffusion
|
8 |
+
This is the fine-tuned Stable Diffusion model trained on images from the <b>entergalactic</b> on Netflix..
|
9 |
+
No tokens is needed.
|
10 |
|
11 |
+
### Diffusers
|
|
|
|
|
|
|
12 |
|
13 |
This model can be used just like any other Stable Diffusion model. For more information,
|
14 |
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
|
|
|
20 |
from diffusers import StableDiffusionPipeline
|
21 |
import torch
|
22 |
|
23 |
+
model_id = "alexzheng/"
|
24 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
25 |
pipe = pipe.to("cuda")
|
26 |
|
27 |
+
prompt = "a beautiful young female with long dark hair, clothed in full dress"
|
28 |
image = pipe(prompt).images[0]
|
29 |
|
30 |
+
image.save("./samples/0_0.png")
|
31 |
```
|
32 |
|
|
|
33 |
|
|
|
|
|
|
|
34 |
|
35 |
+
### Sample images
|
36 |
+
|
37 |
+
"a beautiful young female with long dark hair, clothed in full dress"
|
38 |
+
|
39 |
+
![output Samples v3](https://huggingface.co/AlexZheng/galactic-diffusion-v1.0/resolve/main/samples/0_0.png)
|
40 |
+
|
41 |
+
"a strong handsome young male clothed in metal armors"
|
42 |
+
|
43 |
+
![output Samples v3](https://huggingface.co/AlexZheng/galactic-diffusion-v1.0/resolve/main/samples/2_0.png)
|
44 |
+
|
45 |
+
"a British shorthair cat sitting on the floor"
|
46 |
+
|
47 |
+
![output Samples v3](https://huggingface.co/AlexZheng/galactic-diffusion-v1.0/resolve/main/samples/6_0.png)
|
48 |
+
|
49 |
+
"a golden retriever running in the park"
|
50 |
+
|
51 |
+
![output Samples v3](https://huggingface.co/AlexZheng/galactic-diffusion-v1.0/resolve/main/samples/8_0.png)
|
52 |
+
|
53 |
+
"a blue shining Porsche sports car"
|
54 |
+
|
55 |
+
![output Samples v3](https://huggingface.co/AlexZheng/galactic-diffusion-v1.0/resolve/main/samples/10_0.png)
|
56 |
+
|
57 |
+
"a modern concept house, two stories, no people"
|
58 |
+
|
59 |
+
![output Samples v3](https://huggingface.co/AlexZheng/galactic-diffusion-v1.0/resolve/main/samples/12_0.png)
|
60 |
+
|
61 |
+
"a warm and sweet living room, a TV, no people"
|
62 |
+
|
63 |
+
![output Samples v3](https://huggingface.co/AlexZheng/galactic-diffusion-v1.0/resolve/main/samples/14_0.png)
|
64 |
+
|
65 |
+
"a beautiful city night scene, no people"
|
66 |
|
67 |
+
![output Samples v3](https://huggingface.co/AlexZheng/galactic-diffusion-v1.0/resolve/main/samples/16_0.png)
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
69 |
|
|
|
|
|
70 |
|
|