nitsuai's picture
Duplicate from michaelfeil/ct2fast-paraphrase-multilingual-MiniLM-L12-v2
2365abf verified
---
pipeline_tag: sentence-similarity
language: multilingual
license: apache-2.0
tags:
- ctranslate2
- int8
- float16
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# # Fast-Inference with Ctranslate2
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
quantized version of [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
```bash
pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1
```
```python
# from transformers import AutoTokenizer
model_name = "michaelfeil/ct2fast-paraphrase-multilingual-MiniLM-L12-v2"
model_name_orig="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
from hf_hub_ctranslate2 import EncoderCT2fromHfHub
model = EncoderCT2fromHfHub(
# load in int8 on CUDA
model_name_or_path=model_name,
device="cuda",
compute_type="int8_float16"
)
outputs = model.generate(
text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
max_length=64,
) # perform downstream tasks on outputs
outputs["pooler_output"]
outputs["last_hidden_state"]
outputs["attention_mask"]
# alternative, use SentenceTransformer Mix-In
# for end-to-end Sentence embeddings generation
# (not pulling from this CT2fast-HF repo)
from hf_hub_ctranslate2 import CT2SentenceTransformer
model = CT2SentenceTransformer(
model_name_orig, compute_type="int8_float16", device="cuda"
)
embeddings = model.encode(
["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=True,
)
print(embeddings.shape, embeddings)
scores = (embeddings @ embeddings.T) * 100
# Hint: you can also host this code via REST API and
# via github.com/michaelfeil/infinity
```
Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2)
and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2)
- `compute_type=int8_float16` for `device="cuda"`
- `compute_type=int8` for `device="cpu"`
Converted on 2023-10-13 using
```
LLama-2 -> removed <pad> token.
```
# Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
# Original description
# sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
```