metadata
library_name: transformers
language:
- ja
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- nkkbr/NG_word_detect
metrics:
- wer
model-index:
- name: NG_word_detect
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NG_word_detect
type: nkkbr/NG_word_detect
args: NG_word_detect
metrics:
- name: Wer
type: wer
value: 43.02848575712144
NG_word_detect
This model is a fine-tuned version of openai/whisper-large-v3 on the NG_word_detect dataset. It achieves the following results on the evaluation set:
- Loss: 0.1601
- Wer: 43.0285
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2387 | 0.1524 | 25 | 0.2262 | 59.5952 |
0.2003 | 0.3049 | 50 | 0.1823 | 50.6747 |
0.1797 | 0.4573 | 75 | 0.1787 | 51.6492 |
0.2083 | 0.6098 | 100 | 0.1732 | 49.1004 |
0.1798 | 0.7622 | 125 | 0.1681 | 46.9265 |
0.136 | 0.9146 | 150 | 0.1684 | 48.6507 |
0.0572 | 1.0671 | 175 | 0.1701 | 47.9760 |
0.0533 | 1.2195 | 200 | 0.1600 | 45.6522 |
0.0735 | 1.3720 | 225 | 0.1644 | 46.4018 |
0.0731 | 1.5244 | 250 | 0.1582 | 45.8771 |
0.0734 | 1.6768 | 275 | 0.1583 | 44.6777 |
0.0714 | 1.8293 | 300 | 0.1552 | 44.1529 |
0.0663 | 1.9817 | 325 | 0.1511 | 44.3778 |
0.0389 | 2.1341 | 350 | 0.1561 | 42.8786 |
0.0143 | 2.2866 | 375 | 0.1618 | 43.7031 |
0.0215 | 2.4390 | 400 | 0.1624 | 43.2534 |
0.0203 | 2.5915 | 425 | 0.1591 | 43.1784 |
0.0309 | 2.7439 | 450 | 0.1617 | 43.3283 |
0.0138 | 2.8963 | 475 | 0.1612 | 43.1034 |
0.0065 | 3.0488 | 500 | 0.1601 | 43.0285 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1