54data's picture
update model card README.md
1cefefa
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
model-index:
  - name: gpt_trinity_2_4_3e-5_lp5_nb5
    results: []

gpt_trinity_2_4_3e-5_lp5_nb5

This model is a fine-tuned version of skt/kogpt2-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0291

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.5765 0.05 1000 4.1247
3.19 0.09 2000 4.0578
3.1177 0.14 3000 4.0708
3.1116 0.19 4000 4.0654
3.0777 0.24 5000 4.0857
3.1105 0.28 6000 4.1127
3.1018 0.33 7000 4.1410
3.0728 0.38 8000 4.1834
3.1248 0.42 9000 4.2058
3.1035 0.47 10000 4.2048
3.0943 0.52 11000 4.1892
3.0724 0.57 12000 4.2063
3.0517 0.61 13000 4.1923
3.0372 0.66 14000 4.2112
3.0235 0.71 15000 4.2043
3.0329 0.76 16000 4.1630
3.0171 0.8 17000 4.1631
2.9997 0.85 18000 4.1563
2.9913 0.9 19000 4.1616
2.9579 0.94 20000 4.1494
2.9576 0.99 21000 4.1367
2.7461 1.04 22000 4.1593
2.7637 1.09 23000 4.1453
2.741 1.13 24000 4.1624
2.7514 1.18 25000 4.1357
2.755 1.23 26000 4.1524
2.7365 1.27 27000 4.1399
2.7356 1.32 28000 4.1285
2.7386 1.37 29000 4.1286
2.7489 1.42 30000 4.1231
2.7518 1.46 31000 4.1104
2.7317 1.51 32000 4.1202
2.7378 1.56 33000 4.1132
2.7309 1.6 34000 4.1047
2.7791 1.65 35000 4.0976
2.7427 1.7 36000 4.0874
2.7184 1.75 37000 4.0953
2.7107 1.79 38000 4.0963
2.7122 1.84 39000 4.0841
2.7172 1.89 40000 4.0852
2.7126 1.94 41000 4.0632
2.7063 1.98 42000 4.0643
2.5311 2.03 43000 4.0848
2.4496 2.08 44000 4.0943
2.4597 2.12 45000 4.0799
2.4472 2.17 46000 4.0802
2.4628 2.22 47000 4.0880
2.4508 2.27 48000 4.0791
2.4743 2.31 49000 4.0765
2.4692 2.36 50000 4.0739
2.4651 2.41 51000 4.0690
2.4885 2.45 52000 4.0723
2.5023 2.5 53000 4.0675
2.4651 2.55 54000 4.0649
2.4774 2.6 55000 4.0695
2.4717 2.64 56000 4.0559
2.4856 2.69 57000 4.0512
2.4572 2.74 58000 4.0473
2.486 2.79 59000 4.0438
2.449 2.83 60000 4.0385
2.456 2.88 61000 4.0355
2.4802 2.93 62000 4.0378
2.4635 2.97 63000 4.0308
2.3742 3.02 64000 4.0488
2.2371 3.07 65000 4.0579
2.2496 3.12 66000 4.0630
2.2758 3.16 67000 4.0516
2.2489 3.21 68000 4.0585
2.2374 3.26 69000 4.0715
2.2862 3.3 70000 4.0507
2.2502 3.35 71000 4.0512
2.238 3.4 72000 4.0545
2.2407 3.45 73000 4.0459
2.2529 3.49 74000 4.0452
2.2453 3.54 75000 4.0459
2.2314 3.59 76000 4.0416
2.2408 3.63 77000 4.0379
2.2497 3.68 78000 4.0348
2.2475 3.73 79000 4.0374
2.2376 3.78 80000 4.0319
2.244 3.82 81000 4.0331
2.2611 3.87 82000 4.0306
2.237 3.92 83000 4.0301
2.2337 3.97 84000 4.0291

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.9.0+cu102
  • Datasets 2.8.0
  • Tokenizers 0.13.2