This model is fintuned on instruction dataset using SalesForce/blip-imagecaptioning-base model.

Usage:

from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image

processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
if processor.tokenizer.eos_token is None:
    processor.tokenizer.eos_token = '<|eos|>'
model = BlipForConditionalGeneration.from_pretrained("prasanna2003/Instruct-blip-v2")

image = Image.open('file_name.jpg').convert('RGB')

prompt = """Instruction: Answer the following input according to the image.
Input: Describe this image.
output: """

inputs = processor(image, prompt, return_tensors="pt")

output = model.generate(**inputs, max_length=100)
print(tokenizer.decode(output[0]))
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train nnpy/Instruct-blip-v2