|
--- |
|
license: mit |
|
language: |
|
- en |
|
--- |
|
|
|
This model is a fine-tuned version of Llama2-7B described in our paper **RAG-LER: Ranking Adapted Generation with Language-Model Enabled Regulation**. |
|
|
|
## How to Get Started with the Model |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("notoookay/ragler-llama2-7b") |
|
model = AutoModelForCausalLM.from_pretrained("notoookay/ragler-llama2-7b", torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
# Example usage |
|
input_text = "### Instruction:\nAnswer the following question.\n\n### Input:\nQuestion:\nWhat is the capital of France?\n\n### Response:\n" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
The corresponding re-ranker supervised by this model can be found [here](https://huggingface.co/notoookay/ragler-llama2-7b-reranker). |