|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank |
|
model-index: |
|
- name: llama3-8b-instruct-qlora-large |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3-8b-instruct-qlora-large |
|
|
|
This model is a fine-tuned version of [LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank](https://huggingface.co/LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8530 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.3454 | 1.0 | 158 | 1.2439 | |
|
| 2.1288 | 2.0 | 316 | 1.0900 | |
|
| 2.0335 | 3.0 | 474 | 1.0394 | |
|
| 1.9315 | 4.0 | 632 | 0.9995 | |
|
| 1.804 | 5.0 | 790 | 0.9605 | |
|
| 1.6583 | 6.0 | 948 | 0.9411 | |
|
| 1.4994 | 7.0 | 1106 | 0.9283 | |
|
| 1.3388 | 8.0 | 1264 | 0.9158 | |
|
| 1.1894 | 9.0 | 1422 | 0.9103 | |
|
| 1.0616 | 10.0 | 1580 | 0.9027 | |
|
| 0.9461 | 11.0 | 1738 | 0.8963 | |
|
| 0.8447 | 12.0 | 1896 | 0.8922 | |
|
| 0.7575 | 13.0 | 2054 | 0.8887 | |
|
| 0.6817 | 14.0 | 2212 | 0.8803 | |
|
| 0.6192 | 15.0 | 2370 | 0.8761 | |
|
| 0.5669 | 16.0 | 2528 | 0.8715 | |
|
| 0.5196 | 17.0 | 2686 | 0.8719 | |
|
| 0.479 | 18.0 | 2844 | 0.8683 | |
|
| 0.4473 | 19.0 | 3002 | 0.8662 | |
|
| 0.4202 | 20.0 | 3160 | 0.8624 | |
|
| 0.397 | 21.0 | 3318 | 0.8590 | |
|
| 0.377 | 22.0 | 3476 | 0.8573 | |
|
| 0.3622 | 23.0 | 3634 | 0.8558 | |
|
| 0.3514 | 24.0 | 3792 | 0.8548 | |
|
| 0.3434 | 25.0 | 3950 | 0.8543 | |
|
| 0.3349 | 26.0 | 4108 | 0.8541 | |
|
| 0.332 | 27.0 | 4266 | 0.8538 | |
|
| 0.328 | 28.0 | 4424 | 0.8541 | |
|
| 0.3286 | 29.0 | 4582 | 0.8532 | |
|
| 0.3279 | 30.0 | 4740 | 0.8530 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |