metadata
license: apache-2.0
base_model: facebook/hubert-large-ll60k
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: HuBERT_Jibbali_lang
results: []
HuBERT_Jibbali_lang
This model is a fine-tuned version of facebook/hubert-large-ll60k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2017
- Wer: 0.1944
- Cet: 0.1189
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cet |
---|---|---|---|---|---|
10.6563 | 0.99 | 56 | 5.6577 | 1.0 | 0.9812 |
3.3895 | 2.0 | 113 | 3.2018 | 1.0 | 0.9812 |
3.1588 | 2.99 | 169 | 3.1347 | 1.0 | 0.9812 |
3.1308 | 4.0 | 226 | 3.0567 | 1.0 | 0.9812 |
2.8933 | 4.99 | 282 | 2.8226 | 1.0 | 0.9353 |
2.5444 | 6.0 | 339 | 2.0947 | 1.0 | 0.8588 |
0.995 | 6.99 | 395 | 0.5049 | 0.4974 | 0.1654 |
0.3567 | 8.0 | 452 | 0.2622 | 0.2485 | 0.1132 |
0.2914 | 8.99 | 508 | 0.1980 | 0.2105 | 0.0749 |
0.14 | 10.0 | 565 | 0.2154 | 0.2069 | 0.0821 |
0.1442 | 10.99 | 621 | 0.1965 | 0.1988 | 0.0969 |
0.1401 | 12.0 | 678 | 0.2135 | 0.1937 | 0.0960 |
0.1019 | 12.99 | 734 | 0.2185 | 0.1948 | 0.1094 |
0.1088 | 14.0 | 791 | 0.1957 | 0.1966 | 0.1121 |
0.1314 | 14.99 | 847 | 0.1983 | 0.1933 | 0.1019 |
0.0522 | 16.0 | 904 | 0.2026 | 0.1944 | 0.1258 |
0.126 | 16.99 | 960 | 0.2033 | 0.1944 | 0.1142 |
0.1028 | 18.0 | 1017 | 0.1940 | 0.1974 | 0.1158 |
0.0767 | 18.99 | 1073 | 0.1969 | 0.1948 | 0.1149 |
0.0468 | 19.82 | 1120 | 0.2017 | 0.1944 | 0.1189 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2