metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment2
results: []
wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment2
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0434
- Per: 0.0207
- Wer: 0.0212
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 30.0
Training results
Training Loss | Epoch | Step | Validation Loss | Per | Wer |
---|---|---|---|---|---|
2.4593 | 1.0 | 546 | 1.6587 | 0.9769 | 0.9819 |
1.7776 | 2.0 | 1093 | 1.5794 | 0.9995 | 0.9994 |
1.733 | 3.0 | 1640 | 1.5264 | 0.9998 | 0.9998 |
1.6734 | 4.0 | 2187 | 1.3536 | 0.9948 | 0.9831 |
1.5266 | 5.0 | 2733 | 0.8784 | 0.6903 | 0.7321 |
1.1705 | 6.0 | 3280 | 0.3408 | 0.2076 | 0.2568 |
0.8237 | 7.0 | 3827 | 0.1968 | 0.1045 | 0.1223 |
0.66 | 8.0 | 4374 | 0.1400 | 0.0756 | 0.0851 |
0.5747 | 9.0 | 4920 | 0.0954 | 0.0665 | 0.0659 |
0.5063 | 10.0 | 5467 | 0.0999 | 0.0645 | 0.0650 |
0.4641 | 11.0 | 6014 | 0.0800 | 0.0545 | 0.0572 |
0.4246 | 12.0 | 6561 | 0.0783 | 0.0512 | 0.0506 |
0.3957 | 13.0 | 7107 | 0.0780 | 0.0494 | 0.0516 |
0.3693 | 14.0 | 7654 | 0.0647 | 0.0393 | 0.0411 |
0.3517 | 15.0 | 8201 | 0.0597 | 0.0364 | 0.0370 |
0.3292 | 16.0 | 8748 | 0.0577 | 0.0356 | 0.0361 |
0.3079 | 17.0 | 9294 | 0.0573 | 0.0346 | 0.0362 |
0.2946 | 18.0 | 9841 | 0.0622 | 0.0350 | 0.0389 |
0.2735 | 19.0 | 10388 | 0.0525 | 0.0293 | 0.0300 |
0.2588 | 20.0 | 10935 | 0.0553 | 0.0254 | 0.0283 |
0.2477 | 21.0 | 11481 | 0.0479 | 0.0244 | 0.0259 |
0.2346 | 22.0 | 12028 | 0.0560 | 0.0280 | 0.0283 |
0.222 | 23.0 | 12575 | 0.0421 | 0.0242 | 0.0250 |
0.208 | 24.0 | 13122 | 0.0508 | 0.0240 | 0.0245 |
0.2002 | 25.0 | 13668 | 0.0435 | 0.0218 | 0.0223 |
0.1912 | 26.0 | 14215 | 0.0477 | 0.0225 | 0.0239 |
0.1823 | 27.0 | 14762 | 0.0414 | 0.0210 | 0.0214 |
0.1745 | 28.0 | 15309 | 0.0434 | 0.0212 | 0.0216 |
0.1703 | 29.0 | 15855 | 0.0427 | 0.0202 | 0.0212 |
0.163 | 29.96 | 16380 | 0.0434 | 0.0207 | 0.0212 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 1.18.3
- Tokenizers 0.13.3