nrshoudi's picture
Model save
81f7181
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment2
    results: []

wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0434
  • Per: 0.0207
  • Wer: 0.0212

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 30.0

Training results

Training Loss Epoch Step Validation Loss Per Wer
2.4593 1.0 546 1.6587 0.9769 0.9819
1.7776 2.0 1093 1.5794 0.9995 0.9994
1.733 3.0 1640 1.5264 0.9998 0.9998
1.6734 4.0 2187 1.3536 0.9948 0.9831
1.5266 5.0 2733 0.8784 0.6903 0.7321
1.1705 6.0 3280 0.3408 0.2076 0.2568
0.8237 7.0 3827 0.1968 0.1045 0.1223
0.66 8.0 4374 0.1400 0.0756 0.0851
0.5747 9.0 4920 0.0954 0.0665 0.0659
0.5063 10.0 5467 0.0999 0.0645 0.0650
0.4641 11.0 6014 0.0800 0.0545 0.0572
0.4246 12.0 6561 0.0783 0.0512 0.0506
0.3957 13.0 7107 0.0780 0.0494 0.0516
0.3693 14.0 7654 0.0647 0.0393 0.0411
0.3517 15.0 8201 0.0597 0.0364 0.0370
0.3292 16.0 8748 0.0577 0.0356 0.0361
0.3079 17.0 9294 0.0573 0.0346 0.0362
0.2946 18.0 9841 0.0622 0.0350 0.0389
0.2735 19.0 10388 0.0525 0.0293 0.0300
0.2588 20.0 10935 0.0553 0.0254 0.0283
0.2477 21.0 11481 0.0479 0.0244 0.0259
0.2346 22.0 12028 0.0560 0.0280 0.0283
0.222 23.0 12575 0.0421 0.0242 0.0250
0.208 24.0 13122 0.0508 0.0240 0.0245
0.2002 25.0 13668 0.0435 0.0218 0.0223
0.1912 26.0 14215 0.0477 0.0225 0.0239
0.1823 27.0 14762 0.0414 0.0210 0.0214
0.1745 28.0 15309 0.0434 0.0212 0.0216
0.1703 29.0 15855 0.0427 0.0202 0.0212
0.163 29.96 16380 0.0434 0.0207 0.0212

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 1.18.3
  • Tokenizers 0.13.3