nrshoudi's picture
update model card README.md
02248bd
|
raw
history blame
3.24 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-large-xls-r-300m-Arabic-phoneme
    results: []

wav2vec2-large-xls-r-300m-Arabic-phoneme

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0955
  • Per: 0.0852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Per
2.5617 1.0 102 2.2924 1.0
2.2639 2.0 204 2.3079 1.0
2.3203 2.99 306 2.3406 1.0
2.2545 4.0 409 2.2614 1.0
2.1643 5.0 511 1.7664 1.0
1.7206 6.0 613 1.7111 1.0
1.7024 6.99 715 1.7146 1.0
1.719 8.0 818 1.7485 1.0
1.7268 9.0 920 1.7347 1.0
1.7042 10.0 1022 1.7078 1.0
1.6836 10.99 1124 1.6868 1.0
1.6719 12.0 1227 1.6798 1.0
1.6573 13.0 1329 1.6622 1.0
1.6353 14.0 1431 1.6339 1.0
1.6179 14.99 1533 1.5896 1.0
1.5669 16.0 1636 1.5226 0.9793
1.5276 17.0 1738 1.4972 0.9533
1.4857 18.0 1840 1.4075 0.9757
1.4144 18.99 1942 1.3158 0.9685
1.3073 20.0 2045 1.1385 0.9692
1.1651 21.0 2147 0.9220 0.9523
1.0036 22.0 2249 0.7287 0.8698
0.7561 22.99 2351 0.5178 0.5407
0.6271 24.0 2454 0.3903 0.4185
0.5033 25.0 2556 0.2525 0.2356
0.4183 26.0 2658 0.1868 0.1624
0.351 26.99 2760 0.1435 0.1200
0.3256 28.0 2863 0.1154 0.1035
0.2859 29.0 2965 0.0996 0.0849
0.2771 29.93 3060 0.0996 0.0910

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3